Distributed ice thickness and volume of all glaciers around the globe

[1] A new physically based approach for calculating glacier ice thickness distribution and volume is presented and applied to all glaciers and ice caps worldwide. Combining glacier outlines of the globally complete Randolph Glacier Inventory with terrain elevation models (Shuttle Radar Topography Mission/Advanced Spaceborne Thermal Emission and Reflection Radiometer), we use a simple dynamic model to obtain spatially distributed thickness of individual glaciers by inverting their surface topography. Results are validated against a comprehensive set of thickness observations for 300 glaciers from most glacierized regions of the world. For all mountain glaciers and ice caps outside of the Antarctic and Greenland ice sheets we find a total ice volume of 170 × 103 ± 21 × 103 km3, or 0.43 ± 0.06 m of potential sea level rise.

[1]  R. Kaushik,et al.  GROUND PENETRATING RADAR ICE THICKNESS MEASUREMENTS OF DOKRIANI BAMAK (GLACIER), GARHWAL HIMALAYA , 1999 .

[2]  D. Benn,et al.  Thermal structure and drainage system of a small valley glacier (Tellbreen, Svalbard), investigated by ground penetrating radar , 2010 .

[3]  M. Rückamp,et al.  King George Island ice cap geometry updated with airborne GPR measurements , 2011 .

[4]  R. Armstrong,et al.  The Physics of Glaciers , 1981 .

[5]  Helgi Björnsson,et al.  Surface and bedrock topography of ice caps in Iceland, mapped by radio echo-sounding , 1986 .

[6]  Walter Silverio,et al.  Glacier changes and climate trends derived from multiple sources in the data scarce Cordillera Vilcanota region, southern Peruvian Andes , 2012 .

[7]  M. Kennett,et al.  Helicopter-borne radio-echo sounding of Svartisen, Norway , 1993, Annals of Glaciology.

[8]  Helgi Björnsson,et al.  Subglacial lakes and jökulhlaups in Iceland , 2003 .

[9]  R. Hyndman Gravity Measurements on the Devon Island Ice cap and an Adjoining Glacier , 1965, Journal of Glaciology.

[10]  S. Peckham,et al.  The physical basis of glacier volume-area scaling , 1997 .

[11]  B. Smith,et al.  A low-frequency ice-penetrating radar system adapted for use from an airplane: test results from Bering and Malaspina Glaciers, Alaska, USA , 2009, Annals of Glaciology.

[12]  J. Moore,et al.  Changes in geometry and subglacial drainage of Midre Lovénbreen, Svalbard, determined from digital elevation models , 2003 .

[13]  Huang Maohuan On the Temperature Distribution of Glaciers in China , 1990, Journal of Glaciology.

[14]  E. Berthier,et al.  Neural Networks Applied to Estimating Subglacial Topography and Glacier Volume , 2009 .

[15]  T. Bolch,et al.  The first complete glacier inventory for the whole of Greenland , 2012 .

[16]  F. Navarro,et al.  Radioglaciological studies on Hurd Peninsula glaciers, Livingston Island, Antarctica , 2009, Annals of Glaciology.

[17]  G. Cogley The Future of the World's Glaciers , 2012 .

[18]  Matt Nolan,et al.  Ice-thickness measurements of Taku Glacier, Alaska, U.S.A., and their relevance to its recent behavior , 1995, Journal of Glaciology.

[19]  G. Gudmundsson A three-dimensional numerical model of the confluence area of Unteraargletscher, Bernese Alps, Switzerland , 1999 .

[20]  J. Dowdeswell,et al.  Digital Mapping of the Nordaustlandet Ice Caps from Airborne Geophysical Investigations , 1986, Annals of Glaciology.

[21]  W. Schöner,et al.  Determination of total ice volume and ice-thickness distribution of two glaciers in the Hohe Tauern region, Eastern Alps, from GPR data , 2009, Annals of Glaciology.

[22]  J. Harper,et al.  Cirque glacier sensitivity to 21st century warming: Sperry Glacier, Rocky Mountains, USA , 2010 .

[23]  D. Qin,et al.  An extended “perfect‐plasticity” method for estimating ice thickness along the flow line of mountain glaciers , 2012 .

[24]  Zhang Shiqiang Liu Shiyin Du Wentao Wu Zhen Structural Characteristics of the No.12 Glacier in Laohugou Valley,Qilian Mountain Based on the Ground Penetrating Radar Combined with FDTD Simulation , 2011 .

[25]  M. Hoelzle,et al.  The application of glacier inventory data for estimating past climate change effects on mountain glaciers: A comparison between the European Alps and the Southern Alps of New Zealand , 2007 .

[26]  M. Hoelzle,et al.  Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: a pilot study with the European Alps , 1995, Annals of Glaciology.

[27]  S. P. Anderson,et al.  Glaciers Dominate Eustatic Sea-Level Rise in the 21st Century , 2007, Science.

[28]  J. Oerlemans,et al.  Modelling the climate sensitivity of Storbreen and Engabreen, Norway , 2006 .

[29]  J. Oerlemans,et al.  Sensitivity of Glaciers and Small Ice Caps to Greenhouse Warming , 1992, Science.

[30]  S. Williamson,et al.  Iceberg calving rates from northern Ellesmere Island ice caps, Canadian Arctic, 1999–2003 , 2008, Journal of Glaciology.

[31]  W. Paterson,et al.  Analysis of a Core Through the Meighen Ice Cap, Arctic Canada, and its Paleoclimatic Implications , 1974, Quaternary Research.

[32]  L. A. Rasmussen,et al.  Glossary of glacier mass balance and related terms , 2010 .

[33]  Koji Fujita,et al.  Performance of ASTER and SRTM DEMs, and their potential for assessing glacial lakes in the Lunana region, Bhutan Himalaya , 2008, Journal of Glaciology.

[34]  M. Huss Mass balance of Pizolgletscher , 2010 .

[35]  Nozomu Naito,et al.  Radio echo-sounding through supraglacial debris on Lirung and Khumbu Glaciers, Nepal Himalayas , 2000 .

[36]  A. Shepherd,et al.  Form and flow of the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian High Arctic , 2002 .

[37]  E. Bernard,et al.  High density coverage investigation of The Austre LovénBreen (Svalbard) using Ground Penetrating Radar , 2011, 2011 6th International Workshop on Advanced Ground Penetrating Radar (IWAGPR).

[38]  Sarah C. B. Raper,et al.  The potential for sea level rise: New estimates from glacier and ice cap area and volume distributions , 2005 .

[39]  J. Pu,et al.  Recent area and ice volume change of Kangwure Glacier in the middle of Himalayas , 2010 .

[40]  A. Bauder,et al.  A method to estimate the ice volume and ice-thickness distribution of alpine glaciers , 2009 .

[41]  R. Hock,et al.  Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data , 2010 .

[42]  Tómas Jóhannesson,et al.  Time–Scale for Adjustment of Glaciers to Changes in Mass Balance , 1989, Journal of Glaciology.

[43]  A. Hubbard,et al.  Ice thickness and basal conditions of vestfonna ice cap, eastern svalbard , 2011 .

[44]  Barclay Kamb,et al.  Stress-Gradient Coupling in Glacier Flow: I. Longitudinal Averaging of the Influence of Ice Thickness and Surface Slope , 1986, Journal of Glaciology.

[45]  J. F. Nye The flow of a glacier in a channel of rectangular, elliptic or parabolic cross-section , 1965 .

[46]  L. A. Rasmussen,et al.  Bed topography inferred from airborne radio-echo sounding of Columbia Glacier, Alaska , 1986 .

[47]  Mark F. Meier,et al.  GLACIERS AND THE CHANGING EARTH SYSTEM: A 2004 SNAPSHOT , 2010 .

[48]  M. L. Cuadrado,et al.  Ice-volume changes (1936–1990) and structure of Aldegondabreen, Spitsbergen , 2005, Annals of Glaciology.

[49]  H. Björnsson Radio-Echo Sounding Maps of Storglaciären, Isfallsglaciären and Rabots Glaciär, Northern Sweden , 1981 .

[50]  J. W. Sanders,et al.  Subsurface hydrology of an overdeepened cirque glacier , 2011, Journal of Glaciology.

[51]  F. Paul,et al.  Modeling glacier thickness distribution and bed topography over entire mountain ranges with GlabTop: Application of a fast and robust approach , 2012 .

[52]  Andreas Bauder,et al.  Ice volume distribution and implications on runoff projections in a glacierized catchment , 2012 .

[53]  A. Hubbard,et al.  Comparison of a three-dimensional model for glacier flow with field data from Haut Glacier d’Arolla, Switzerland , 1998, Journal of Glaciology.

[54]  Josefina Araos,et al.  Variaciones recientes del lóbulo ZapataSur, Glaciar Tyndall. Campo de HieloPatagónico Sur (Chile) , 2007 .

[55]  R. Stöckli,et al.  Temporal and spatial changes of Laika Glacier, Canadian Arctic, since 1959, inferred from satellite remote sensing and mass-balance modelling , 2008, Journal of Glaciology.

[56]  Frank Paul,et al.  On the suitability of the SRTM DEM and ASTER GDEM for the compilation of topographic parameters in glacier inventories , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[57]  R. Bindschadler,et al.  Geometry and Dynamics of a Surge-type Glacier , 1977, Journal of Glaciology.

[58]  M. Hoelzle,et al.  Secular glacier mass balances derived from cumulative glacier length changes , 2003 .

[59]  Roger Wheate,et al.  Randolph Glacier Inventory [v2.0]: A Dataset of Global Glacier Outlines , 2012 .

[60]  Christian Vincent,et al.  Relative contribution of surface mass-balance and ice-flux changes to the accelerated thinning of Mer de Glace, French Alps, over1979-2008 , 2012, Journal of Glaciology.

[61]  Siri Jodha Singh Khalsa,et al.  The GLIMS geospatial glacier database: A new tool for studying glacier change ☆ , 2007 .

[62]  Andrew Jarvis,et al.  Hole-filled SRTM for the globe Version 4 , 2008 .

[63]  Pu Jian-chen Ice Thickness,Sounded by Ground Penetrating Radar,on the Bayi Glacier in the Qilian Mountains,China , 2009 .

[64]  J. Oerlemans,et al.  Response of the ice cap Hardangerjøkulen in southern Norway to the 20th and 21st century climates , 2009 .

[65]  R. Hock,et al.  Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise , 2011 .

[66]  V. Kotlyakov,et al.  Radio echo-sounding of sub-polar glaciers in Svalbard: some problems and results of Soviet studies , 1987 .

[67]  A. Bauder,et al.  The ice-thickness distribution of Unteraargletscher, Switzerland , 2003, Annals of Glaciology.

[68]  N. Konyer,et al.  Macroholes in stalagmites and the search for lost water , 2012 .

[69]  A. Ruddell Recent glacier and climate change in the New Zealand Alps , 1995 .

[70]  R. Hooke Pleistocene Ice at the Base of The Barnes Ice Cap, Baffin Island, N.W.T., Canada , 1976 .

[71]  P. Chevallier,et al.  From balance to imbalance: a shift in the dynamic behaviour of Chhota Shigri glacier, western Himalaya, India , 2012 .

[72]  F. Pattyn,et al.  Bed properties and hydrological conditions underneath McCall Glacier, Alaska, USA , 2009, Annals of Glaciology.

[73]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[74]  A. Ohmura,et al.  Estimation of Alpine glacier water resources and their change since the 1870s , 1990 .

[75]  T. Wei Measuring the Depth of Gurenhekou Glacier in the South of the Tibetan Plateau Using GPR and Estimating Its Volume Based on the Outcomes , 2008 .

[76]  D. Six,et al.  Glacier thickening and decay analysis from 50 years of glaciological observations performed on Glacier d’Argentière, Mont Blanc area, France , 2009, Annals of Glaciology.

[77]  B. Hasholt,et al.  Radio-echo Sounding at the Mittivakkat Gletscher, Southeast Greenland , 1999 .

[78]  J. W. Glen,et al.  The creep of polycrystalline ice , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[79]  A. Bauder,et al.  Triggering and drainage mechanisms of the 2004 glacier-dammed lake outburst in Gornergletscher, Switzerland , 2008 .

[80]  A. Bauder,et al.  An estimate of the glacier ice volume in the Swiss Alps , 2008 .

[81]  A. Ohmura Completing the World Glacier Inventory , 2009, Annals of Glaciology.

[82]  J. Hagen,et al.  On the Net Mass Balance of the Glaciers and Ice Caps in Svalbard, Norwegian Arctic , 2003 .

[83]  N. Blindow,et al.  Performance and calibration of the helicoper GPR system BGR-P30 , 2011, 2011 6th International Workshop on Advanced Ground Penetrating Radar (IWAGPR).

[84]  P. Holmlund,et al.  Radar surveys on Scandinavian glaciers, in search of useful climate archives , 1996 .