Non-parametric estimation of Gini index with right censored observations

Abstract We obtain a simple non-parametric estimator of the Gini index when the sample contains right censored observations. Asymptotic properties of the proposed estimator are studied. Finite sample performance of the estimator is evaluated through a Monte Carlo simulation study.

[1]  Alan J. Lee,et al.  U-Statistics: Theory and Practice , 1990 .

[2]  S. Jenkins,et al.  Measuring inequality using censored data: a multiple‐imputation approach to estimation and inference , 2011 .

[3]  S. Tse Lorenz Curve for Truncated and Censored Data , 2006 .

[4]  L. Ceriani,et al.  The origins of the Gini index: extracts from Variabilità e Mutabilità (1912) by Corrado Gini , 2012 .

[5]  Gupeng Zhang,et al.  Gini index estimation for lifetime data , 2017, Lifetime data analysis.

[6]  M. Bonetti,et al.  The Gini concentration test for survival data , 2009, Lifetime data analysis.

[7]  Liang Peng,et al.  EMPIRICAL LIKELIHOOD METHODS FOR THE GINI INDEX , 2011 .

[8]  E. L. Lehmann,et al.  Consistency and Unbiasedness of Certain Nonparametric Tests , 1951 .

[9]  W. Stute,et al.  The strong law under random censorship , 1993 .

[10]  Russell Davidson,et al.  Reliable Inference for the Gini Index , 2009 .

[11]  S. Yitzhaki,et al.  The Gini Methodology , 2013 .

[12]  Yves Tillé,et al.  Variance estimation of the Gini index: revisiting a result several times published , 2013 .

[13]  D. Harrington A class of rank test procedures for censored survival data , 1982 .

[14]  G. Satten,et al.  Inverse Probability of Censoring Weighted U‐statistics for Right‐Censored Data with an Application to Testing Hypotheses , 2010 .

[15]  A A Tsiatis,et al.  A linear rank test for use when the main interest is in differences in cure rates. , 1989, Biometrics.

[16]  Yichuan Zhao,et al.  Jackknife empirical likelihood confidence interval for the Gini index , 2016 .