Simple mathematical models with very complicated dynamics

First-order difference equations arise in many contexts in the biological, economic and social sciences. Such equations, even though simple and deterministic, can exhibit a surprising array of dynamical behaviour, from stable points, to a bifurcating hierarchy of stable cycles, to apparently random fluctuations. There are consequently many fascinating problems, some concerned with delicate mathematical aspects of the fine structure of the trajectories, and some concerned with the practical implications and applications. This is an interpretive review of them.

[1]  N. Metropolis,et al.  Stable states of a non-linear transformation , 1967 .

[2]  J. Segrest,et al.  Science and Society. , 1973, Nature.

[3]  A. Macfadyen,et al.  Animal Ecology: Aims and Methods , 1970 .

[4]  R. May,et al.  Biological populations obeying difference equations: stable points, stable cycles, and chaos. , 1975, Journal of theoretical biology.

[5]  D. Layzer,et al.  Arrow of time , 1975 .

[6]  E. Gilbert,et al.  Symmetry types of periodic sequences , 1961 .

[7]  P. Samuelson,et al.  Foundations of Economic Analysis. , 1948 .

[8]  John G. Kemeny,et al.  Mathematical models in the social sciences , 1964 .

[9]  R. Pearl Biometrics , 1914, The American Naturalist.

[10]  Christian Mira,et al.  Sensitivity problems related to certain bifurcations in non-linear recurrence relations , 1969, Autom..

[11]  W. Ricker Stock and Recruitment , 1954 .

[12]  R M May,et al.  Biological Populations with Nonoverlapping Generations: Stable Points, Stable Cycles, and Chaos , 1974, Science.

[13]  J. Yorke,et al.  Period Three Implies Chaos , 1975 .

[14]  L. M. COOK,et al.  Oscillation in the Simple Logistic Growth Model , 1965, Nature.

[15]  Nicholas C. Metropolis,et al.  On Finite Limit Sets for Transformations on the Unit Interval , 1973, J. Comb. Theory A.

[16]  伊藤 嘉昭,et al.  Animal Ecology, Aims and Methods, 2nd Ed., MACFADYEN, A.著, (1963), A5判, 344ページ, 2,520円, Pitman (London) 発行 , 1964 .

[17]  P. Moran,et al.  Some remarks on animal population dynamics. , 1950, Biometrics.

[18]  Michael P. Hassell,et al.  DENSITY-DEPENDENCE IN SINGLE-SPECIES POPULATIONS , 1975 .

[19]  Frank Hoppenstaedt Mathematical Theories of Populations: Demographics, Genetics and Epidemics , 1975 .

[20]  T. Southwood,et al.  THE DYNAMICS OF INSECT POPULATIONS , 1975 .

[21]  J. Maynard Smith,et al.  Mathematical Ideas in Biology , 1968 .

[22]  F. C. Hoppensteadt Mathematical theories of populations : demographics, genetics and epidemics , 1975 .

[23]  R. Goodwin,et al.  The Non-linear Accelerator and the Persistence of Business Cycles , 1951 .

[24]  F. Takens,et al.  On the nature of turbulence , 1971 .

[25]  E. Lorenz The problem of deducing the climate from the governing equations , 1964 .

[26]  S. Goldhor Ecology , 1964, The Yale Journal of Biology and Medicine.

[27]  John G. Kemeny,et al.  Mathematical models in the social sciences , 1964 .

[28]  M. Kac,et al.  On the Distribution of Values of Sums of the Type Σf(2 k t) , 1946 .

[29]  T. W. Chaundy,et al.  THE CONVERGENCE OF SEQUENCES DEFINED BY QUADRATIC RECURRENCE-FORMULAE , 1936 .

[30]  R. May,et al.  Nonlinear Aspects of Competition Between Three Species , 1975 .

[31]  Robert M. May,et al.  On Relationships Among Various Types of Population Models , 1973, The American Naturalist.

[32]  J. Lawton,et al.  Dynamic complexity in predator-prey models framed in difference equations , 1975, Nature.

[33]  P. J. Myrberg Eine Verallgemeinerung der Ablschen Funktionalgleichung , 1963 .

[34]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[35]  Gilbert B. Waldbauer,et al.  Insects, Science, and Society , 1976 .

[36]  G. Kolata,et al.  Cascading bifurcations: the mathematics of chaos. , 1975, Science.

[37]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and Linear Algebra , 1974 .