Current algebras and categorified quantum groups

We identify the trace, or 0th Hochschild homology, of type ADE categorified quantum groups with the corresponding current algebra of the same type. To prove this, we show that 2-representations defined using categories of modules over cyclotomic (or deformed cyclotomic) quotients of KLR-algebras correspond to local (or global) Weyl modules. We also investigate the implications for centers of categories in 2-representations of categorified quantum groups.

[1]  Aaron D. Lauda,et al.  Trace as an Alternative Decategorification Functor , 2014, 1409.1198.

[2]  B. Webster,et al.  Weighted Khovanov-Lauda-Rouquier Algebras , 2012, Documenta Mathematica.

[3]  A diagrammatic approach to categorification of quantum groups II , 2009 .

[4]  Peng Shan,et al.  Crystals of Fock spaces and cyclotomic rational double affine Hecke algebras , 2008, 0811.4549.

[5]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[6]  B. Webster Canonical bases and higher representation theory , 2012, Compositio Mathematica.

[7]  B. Webster A categorical action on quantized quiver varieties , 2012, Mathematische Zeitschrift.

[8]  Anthony Licata,et al.  Coherent sheaves on quiver varieties and categorification , 2011, 1104.0352.

[9]  Yasuyoshi Yonezawa,et al.  sl(N)-Web categories , 2013, 1306.6242.

[10]  A diagrammatic approach to categorification of quantum groups II , 2008, 0803.4121.

[11]  Seok-Jin Kang,et al.  Categorification of highest weight modules via Khovanov-Lauda-Rouquier algebras , 2011, 1102.4677.

[12]  R. Rouquier 2-Kac-Moody algebras , 2008, 0812.5023.

[13]  H. Garland The arithmetic theory of loop algebras , 1978 .

[14]  R. Rouquier Quiver Hecke Algebras and 2-Lie Algebras , 2011, 1112.3619.

[15]  David Hill,et al.  The Khovanov-Lauda 2-Category and Categorifications of a Level Two Quantum n Representation , 2009, Int. J. Math. Math. Sci..

[16]  Spherical 2-Categories and 4-Manifold Invariants☆ , 1998, math/9805030.

[17]  P. Shan,et al.  On the center of quiver Hecke algebras , 2014, 1411.4392.

[19]  Representation and character theory in 2-categories , 2006, math/0602510.

[20]  Aaron D. Lauda,et al.  An introduction to diagrammatic algebra and categorified quantum sl(2) , 2011, 1106.2128.

[21]  Anthony Licata,et al.  Vertex operators and 2-representations of quantum affine algebras , 2011, 1112.6189.

[22]  Ben Webster Unfurling Khovanov-Lauda-Rouquier algebras , 2016, 1603.06311.

[23]  Nathan Geer,et al.  Traces on ideals in pivotal categories , 2011, 1103.1660.

[24]  G. M. Kelly On the radical of a category , 1964, Journal of the Australian Mathematical Society.

[25]  G. Fourier,et al.  A categorical approach to Weyl modules , 2009, 0906.2014.

[26]  Aaron D. Lauda,et al.  A categorification of quantum sl(n) , 2008, 0807.3250.

[27]  B. Mitchell,et al.  Rings with several objects , 1972 .

[28]  David E. V. Rose,et al.  The $\mathfrak{sl}_n$ foam 2-category: a combinatorial formulation of Khovanov-Rozansky homology via categorical skew Howe duality , 2014, 1405.5920.

[29]  Sabin Cautis,et al.  Implicit structure in 2-representations of quantum groups , 2011, 1111.1431.

[30]  S. Loktev,et al.  Weyl, Demazure and fusion modules for the current algebra of sl r+1 , 2006 .

[31]  C. Stroppel,et al.  Highest weight categories arising from Khovanov's diagram algebra III: category O , 2008, 0812.1090.

[32]  Aaron D. Lauda,et al.  Khovanov homology is a skew Howe 2-representation of categorified quantum sl(m) , 2012, 1212.6076.

[33]  J. Brundan On the definition of Kac–Moody 2-category , 2015, 1501.00350.

[34]  From subfactors to categories and topology. I. Frobenius algebras in and Morita equivalence of tensor categories , 2001, math/0111204.

[35]  Sabin Cautis Rigidity in higher representation theory , 2014, 1409.0827.

[36]  H. Nakajima Quiver varieties and Kac-Moody algebras , 1998 .

[37]  A. Beliakova,et al.  Trace decategorification of categorified quantum $$\mathfrak {sl}_2$$sl2 , 2014, 1404.1806.

[38]  M. Mackaay sl(3)-Foams and the Khovanov-Lauda categorification of quantum sl(k) , 2009, 0905.2059.

[39]  J. Brundan,et al.  Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras , 2008, 0808.2032.

[40]  M. Živković Trace Decategorification of Categorified Quantum sl(3) , 2014, Applied Categorical Structures.

[41]  Katsuyuki Naoi,et al.  Loewy series of Weyl modules and the Poincar\'{e} polynomials of quiver varieties , 2011, 1103.4207.

[42]  R. Rouquier,et al.  Derived equivalences for symmetric groups and sl2-categorification , 2004, math/0407205.

[43]  B. Webster,et al.  Knot invariants and higher representation theory I: diagrammatic and geometric categorification of tensor products , 2010, 1001.2020.

[44]  J. Brundan Symmetric functions, parabolic category $\mathcal O$, and the Springer fiber , 2008 .

[45]  M. Balagovic Degeneration of Trigonometric Dynamical Difference Equations for Quantum Loop Algebras to Trigonometric Casimir Equations for Yangians , 2013, 1308.2347.

[46]  J. Robin B. Cockett,et al.  Introduction to linear bicategories , 2000, Mathematical Structures in Computer Science.

[47]  E. Vasserot,et al.  Canonical bases and KLR-algebras , 2011 .

[48]  S. Willerton,et al.  The Mukai pairing, I: a categorical approach , 2007, 0707.2052.

[49]  Aaron D. Lauda,et al.  A diagrammatic approach to categorification of quantum groups II , 2008, 0804.2080.

[50]  Symmetric functions, parabolic category O and the Springer fiber , 2006, math/0608235.

[51]  B. Webster,et al.  Knot Invariants and Higher Representation Theory , 2013, 1309.3796.