Current algebras and categorified quantum groups
暂无分享,去创建一个
Anna Beliakova | Kazuo Habiro | Aaron D. Lauda | Ben Webster | B. Webster | A. Beliakova | K. Habiro | A. Lauda | Ben Webster
[1] Aaron D. Lauda,et al. Trace as an Alternative Decategorification Functor , 2014, 1409.1198.
[2] B. Webster,et al. Weighted Khovanov-Lauda-Rouquier Algebras , 2012, Documenta Mathematica.
[3] A diagrammatic approach to categorification of quantum groups II , 2009 .
[4] Peng Shan,et al. Crystals of Fock spaces and cyclotomic rational double affine Hecke algebras , 2008, 0811.4549.
[5] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[6] B. Webster. Canonical bases and higher representation theory , 2012, Compositio Mathematica.
[7] B. Webster. A categorical action on quantized quiver varieties , 2012, Mathematische Zeitschrift.
[8] Anthony Licata,et al. Coherent sheaves on quiver varieties and categorification , 2011, 1104.0352.
[9] Yasuyoshi Yonezawa,et al. sl(N)-Web categories , 2013, 1306.6242.
[10] A diagrammatic approach to categorification of quantum groups II , 2008, 0803.4121.
[11] Seok-Jin Kang,et al. Categorification of highest weight modules via Khovanov-Lauda-Rouquier algebras , 2011, 1102.4677.
[12] R. Rouquier. 2-Kac-Moody algebras , 2008, 0812.5023.
[13] H. Garland. The arithmetic theory of loop algebras , 1978 .
[14] R. Rouquier. Quiver Hecke Algebras and 2-Lie Algebras , 2011, 1112.3619.
[15] David Hill,et al. The Khovanov-Lauda 2-Category and Categorifications of a Level Two Quantum n Representation , 2009, Int. J. Math. Math. Sci..
[16] Spherical 2-Categories and 4-Manifold Invariants☆ , 1998, math/9805030.
[17] P. Shan,et al. On the center of quiver Hecke algebras , 2014, 1411.4392.
[19] Representation and character theory in 2-categories , 2006, math/0602510.
[20] Aaron D. Lauda,et al. An introduction to diagrammatic algebra and categorified quantum sl(2) , 2011, 1106.2128.
[21] Anthony Licata,et al. Vertex operators and 2-representations of quantum affine algebras , 2011, 1112.6189.
[22] Ben Webster. Unfurling Khovanov-Lauda-Rouquier algebras , 2016, 1603.06311.
[23] Nathan Geer,et al. Traces on ideals in pivotal categories , 2011, 1103.1660.
[24] G. M. Kelly. On the radical of a category , 1964, Journal of the Australian Mathematical Society.
[25] G. Fourier,et al. A categorical approach to Weyl modules , 2009, 0906.2014.
[26] Aaron D. Lauda,et al. A categorification of quantum sl(n) , 2008, 0807.3250.
[27] B. Mitchell,et al. Rings with several objects , 1972 .
[28] David E. V. Rose,et al. The $\mathfrak{sl}_n$ foam 2-category: a combinatorial formulation of Khovanov-Rozansky homology via categorical skew Howe duality , 2014, 1405.5920.
[29] Sabin Cautis,et al. Implicit structure in 2-representations of quantum groups , 2011, 1111.1431.
[30] S. Loktev,et al. Weyl, Demazure and fusion modules for the current algebra of sl r+1 , 2006 .
[31] C. Stroppel,et al. Highest weight categories arising from Khovanov's diagram algebra III: category O , 2008, 0812.1090.
[32] Aaron D. Lauda,et al. Khovanov homology is a skew Howe 2-representation of categorified quantum sl(m) , 2012, 1212.6076.
[33] J. Brundan. On the definition of Kac–Moody 2-category , 2015, 1501.00350.
[34] From subfactors to categories and topology. I. Frobenius algebras in and Morita equivalence of tensor categories , 2001, math/0111204.
[35] Sabin Cautis. Rigidity in higher representation theory , 2014, 1409.0827.
[36] H. Nakajima. Quiver varieties and Kac-Moody algebras , 1998 .
[37] A. Beliakova,et al. Trace decategorification of categorified quantum $$\mathfrak {sl}_2$$sl2 , 2014, 1404.1806.
[38] M. Mackaay. sl(3)-Foams and the Khovanov-Lauda categorification of quantum sl(k) , 2009, 0905.2059.
[39] J. Brundan,et al. Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras , 2008, 0808.2032.
[40] M. Živković. Trace Decategorification of Categorified Quantum sl(3) , 2014, Applied Categorical Structures.
[41] Katsuyuki Naoi,et al. Loewy series of Weyl modules and the Poincar\'{e} polynomials of quiver varieties , 2011, 1103.4207.
[42] R. Rouquier,et al. Derived equivalences for symmetric groups and sl2-categorification , 2004, math/0407205.
[43] B. Webster,et al. Knot invariants and higher representation theory I: diagrammatic and geometric categorification of tensor products , 2010, 1001.2020.
[44] J. Brundan. Symmetric functions, parabolic category $\mathcal O$, and the Springer fiber , 2008 .
[45] M. Balagovic. Degeneration of Trigonometric Dynamical Difference Equations for Quantum Loop Algebras to Trigonometric Casimir Equations for Yangians , 2013, 1308.2347.
[46] J. Robin B. Cockett,et al. Introduction to linear bicategories , 2000, Mathematical Structures in Computer Science.
[47] E. Vasserot,et al. Canonical bases and KLR-algebras , 2011 .
[48] S. Willerton,et al. The Mukai pairing, I: a categorical approach , 2007, 0707.2052.
[49] Aaron D. Lauda,et al. A diagrammatic approach to categorification of quantum groups II , 2008, 0804.2080.
[50] Symmetric functions, parabolic category O and the Springer fiber , 2006, math/0608235.
[51] B. Webster,et al. Knot Invariants and Higher Representation Theory , 2013, 1309.3796.