3D Smeared Fracture FE-Analysis of Concrete Structures

ABSTRACT In the present paper, a finite element code based on the microplane model for concrete is used for the analysis of recently proposed EDF benchmark examples. Four numerical cased are considered: resonnse of concrete constitutive law under uniaxial cyclic loading, mixed tension-shear test (Willam's test) at the constitutive level, shear failure of reinforced concrete beam with and without shear reinforcement and mixed mode failure (Nooru-Mohamed test). In the numerical studies the three-dimensional eight node solid finite elements with eight integration points are employed. As a regularisation procedure the crack band method is used. The numerical results are compared with available experimental data that were only partly known before the study was performed.

[1]  S. Xia,et al.  A nonlocal damage theory , 1987 .

[2]  René de Borst,et al.  Gradient-dependent plasticity: formulation and algorithmic aspects , 1992 .

[3]  Z. Bažant,et al.  Blunt Crack Band Propagation in Finite Element Analysis , 1979 .

[4]  Joško Ožbolt,et al.  Microplane model for concrete with relaxed kinematic constraint , 2001 .

[5]  Zdenek P. Bazant,et al.  Why Continuum Damage is Nonlocal: Micromechanics Arguments , 1991 .

[6]  R. Borst,et al.  CONTINUUM MODELS FOR DISCONTINUOUS MEDIA , 1991 .

[7]  Milan Jirásek,et al.  A thermodynamically consistent approach to microplane theory. Part I. Free energy and consistent microplane stresses , 2001 .

[8]  Ted Belytschko,et al.  Wave propagation in a strain-softening bar: Exact solution , 1985 .

[9]  M. Ortiz,et al.  A CONSTITUTIVE THEORY FOR INELASTIC BEHAVIOUR OF CONCRETE , 1985 .

[10]  Joško Ožbolt,et al.  NUMERICAL SMEARED FRACTURE ANALYSIS: NONLOCAL MICROCRACK INTERACTION APPROACH , 1996 .

[11]  M. B. Nooru-Mohamed Mixed-mode fracture of concrete : An experimental approach , 1992 .

[12]  Z. Bažant,et al.  CRACK SHEAR IN CONCRETE: CRACK BAND MICROPLANE MODEL , 1984 .

[13]  K. Willam,et al.  Fundamental Issues of Smeared Crack Models , 1989 .

[14]  Peter Pivonka,et al.  Comparative studies of 3D‐constitutive models for concrete: application to mixed‐mode fracture , 2004 .

[15]  Z. Bažant,et al.  Nonlocal microplane model for fracture, damage, and size effect in structures , 1990 .

[16]  R. M. Zimmerman,et al.  Behavior of concrete under multiaxial stress states , 1980 .

[17]  Ferhun C. Caner,et al.  Microplane Model M4 for Concrete. I: Formulation with Work-Conjugate Deviatoric Stress , 2000 .

[18]  Egidio Rizzi,et al.  On the formulation of anisotropic elastic degradation.: II. Generalized pseudo-Rankine model for tensile damage , 2001 .

[19]  Z. Bažant,et al.  Crack band theory for fracture of concrete , 1983 .

[20]  Zdeněk P. Bažant,et al.  New explicit microplane model for concrete: Theoretical aspects and numerical implementation , 1992 .

[21]  Zdenek P. Bazant,et al.  Microplane Model for Brittle‐Plastic Material: II. Verification , 1988 .

[22]  Michael Ortiz,et al.  A constitutive theory for the inelastic behavior of concrete , 1985 .

[23]  Pere C. Prat,et al.  Microplane Model for Brittle-Plastic Material: I. Theory , 1988 .

[24]  J. M. Reynouard,et al.  Mixed mode fracture in plain and reinforced concrete: some results on benchmark tests , 2000 .

[25]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .