Nucleation of a (1¯012) twin in hexagonal close-packed crystals

We have studied the atomic structures of the nucleus of a [ 1 0 1 ¯ 1 ] ( 1 ¯ 0 1 2 ) twin in Mg by atomistic simulations using density function theory and an empirical potential. The twinning mechanism for ( 1 ¯ 0 1 2 ) twins is described. The results show that the nucleus consists of one partial dislocation with a Burgers vector of - 50 / 107 [ 1 0 1 ¯ 1 ] together with multiple twinning dislocations (TDs) with a Burgers vector of 1 / 15 [ 1 0 1 ¯ 1 ] . The minimum, stable nucleus involves eight TDs and one partial dislocation, corresponding to a thickness of 17 crystallographic planes.

[1]  A. Serra,et al.  Computer simulation of the structure and mobility of twinning disclocations in H.C.P. Metals , 1991 .

[2]  S. Ishioka Dynamic formation of a twin in a bcc crystal , 1975 .

[3]  J. Hirth,et al.  Atomistic simulations of the shear strength and sliding mechanisms of copper–niobium interfaces , 2008 .

[4]  S. Mendelson,et al.  Dislocation Dissociations in hcp Metals , 1970 .

[5]  Han-Chen Huang,et al.  Shockley partial dislocations to twin: Another formation mechanism and generic driving force , 2004 .

[6]  J. K. Lee,et al.  Deformation twinning in h.c.p. metals and alloys , 1991 .

[7]  R. Hoagland,et al.  Mechanics of nanoscale metallic multilayers: From atomic-scale to micro-scale , 2009 .

[8]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .

[9]  W. Read,et al.  Dislocations in metals , 1954 .

[10]  D. J. Millard,et al.  XXXVIII. Twin formation, in cadmium , 1952 .

[11]  J. B. Adams,et al.  Modelling and Simulation in Materials Science and Engineering EAM potential for magnesium from quantum mechanical forces , 1996 .

[12]  S. Mendelson,et al.  Zonal dislocations and twin lamellae in h.c.p. metals , 1969 .

[13]  A. Serra,et al.  Computer simulation of twinning dislocation in magnesium using a many-body potential , 1991 .

[14]  D. M. Barnett,et al.  An image force theorem for dislocations in anisotropic bicrystals , 1974 .

[15]  M. L. Kronberg Atom movements and dislocation structures for plastic slip in single crystals of β-uranium , 1959 .

[16]  R. Mccabe,et al.  Exploring the dislocation/twin interactions in zirconium , 2007 .

[17]  A. Serra,et al.  Dislocations in interfaces in the h.c.p. metals—I. Defects formed by absorption of crystal dislocations , 1999 .

[18]  Han-Chen Huang,et al.  Novel deformation mechanism of twinned nanowires , 2006 .

[19]  J. Hirth,et al.  Atomistic modeling of the interaction of glide dislocations with “weak” interfaces , 2008 .

[20]  S. Mahajan,et al.  Accommodation and formation of {112̄1} twins in Co single crystals , 1980 .

[21]  David Bacon,et al.  The crystallography and core structure of twinning dislocations in H.C.P. metals , 1988 .

[22]  Sean R. Agnew,et al.  Nonbasal deformation modes of HCP metals and alloys: Role of dislocation source and mobility , 2002 .

[23]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[24]  D. Westlake,et al.  Twinning in zirconium , 1961 .

[25]  A. Serra,et al.  A new model for {1012} twin growth in hcp metals , 1996 .