Low-Rank Optimization with Trace Norm Penalty

The paper addresses the problem of low-rank trace norm minimization. We propose an algorithm that alternates between fixed-rank optimization and rank-one updates. The fixed-rank optimization is characterized by an efficient factorization that makes the trace norm differentiable in the search space and the computation of duality gap numerically tractable. The search space is nonlinear but is equipped with a Riemannian structure that leads to efficient computations. We present a second-order trust-region algorithm with a guaranteed quadratic rate of convergence. Overall, the proposed optimization scheme converges superlinearly to the global solution while maintaining complexity that is linear in the number of rows and columns of the matrix. To compute a set of solutions efficiently for a grid of regularization parameters we propose a predictor-corrector approach that outperforms the naive warm-restart approach on the fixed-rank quotient manifold. The performance of the proposed algorithm is illustrated on p...

[1]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[2]  Solution of the matrix equation AX−XB=C , 1986 .

[3]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[4]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[5]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[6]  Harold R. Parks,et al.  The Implicit Function Theorem , 2002 .

[7]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[8]  Renato D. C. Monteiro,et al.  A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization , 2003, Math. Program..

[9]  Tommi S. Jaakkola,et al.  Weighted Low-Rank Approximations , 2003, ICML.

[10]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[11]  Tongxing Lu,et al.  Solution of the matrix equation AX−XB=C , 2005, Computing.

[12]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[13]  Mee Young Park,et al.  Regularization Path Algorithms for Detecting Gene Interactions , 2006 .

[14]  M. Brand,et al.  Fast low-rank modifications of the thin singular value decomposition , 2006 .

[15]  M. Yuan,et al.  Dimension reduction and coefficient estimation in multivariate linear regression , 2007 .

[16]  Shimon Ullman,et al.  Uncovering shared structures in multiclass classification , 2007, ICML '07.

[17]  R. Bhatia Positive Definite Matrices , 2007 .

[18]  Pierre-Antoine Absil,et al.  Trust-Region Methods on Riemannian Manifolds , 2007, Found. Comput. Math..

[19]  H. V. Trees,et al.  Covariance, Subspace, and Intrinsic CramrRao Bounds , 2007 .

[20]  Francis R. Bach,et al.  Consistency of trace norm minimization , 2007, J. Mach. Learn. Res..

[21]  R. Sepulchre,et al.  Geometric distance and mean for positive semi-definite matrices of fixed rank , 2008 .

[22]  Sabine Van Huffel,et al.  A Geometric Newton Method for Oja's Vector Field , 2008, Neural Computation.

[23]  Silvere Bonnabel,et al.  Riemannian Metric and Geometric Mean for Positive Semidefinite Matrices of Fixed Rank , 2008, SIAM J. Matrix Anal. Appl..

[24]  S. Yun,et al.  An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems , 2009 .

[25]  S. Yun,et al.  An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems , 2009 .

[26]  Levent Tunçel,et al.  Optimization algorithms on matrix manifolds , 2009, Math. Comput..

[27]  Sewoong Oh,et al.  A Gradient Descent Algorithm on the Grassman Manifold for Matrix Completion , 2009, ArXiv.

[28]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[29]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[30]  Inderjit S. Dhillon,et al.  Guaranteed Rank Minimization via Singular Value Projection , 2009, NIPS.

[31]  Francis R. Bach,et al.  Low-Rank Optimization on the Cone of Positive Semidefinite Matrices , 2008, SIAM J. Optim..

[32]  Thomas E. Nichols,et al.  Discovering genetic associations with high-dimensional neuroimaging phenotypes: A sparse reduced-rank regression approach , 2010, NeuroImage.

[33]  Andrea Montanari,et al.  Regularization for matrix completion , 2010, 2010 IEEE International Symposium on Information Theory.

[34]  Robert Tibshirani,et al.  Spectral Regularization Algorithms for Learning Large Incomplete Matrices , 2010, J. Mach. Learn. Res..

[35]  L. Eldén,et al.  Grassmann algorithms for low rank approximation of matrices with missing values , 2010 .

[36]  Gilles Meyer Geometric optimization algorithms for linear regression on fixed-rank matrices , 2011 .

[37]  Shiqian Ma,et al.  Fixed point and Bregman iterative methods for matrix rank minimization , 2009, Math. Program..

[38]  Julien Mairal,et al.  Convex optimization with sparsity-inducing norms , 2011 .

[39]  Pierre-Antoine Absil,et al.  RTRMC: A Riemannian trust-region method for low-rank matrix completion , 2011, NIPS.

[40]  Silvere Bonnabel,et al.  Linear Regression under Fixed-Rank Constraints: A Riemannian Approach , 2011, ICML.

[41]  Bamdev Mishra,et al.  Low-rank optimization for distance matrix completion , 2011, IEEE Conference on Decision and Control and European Control Conference.

[42]  Silvere Bonnabel,et al.  Regression on Fixed-Rank Positive Semidefinite Matrices: A Riemannian Approach , 2010, J. Mach. Learn. Res..

[43]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[44]  Yin Zhang,et al.  Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm , 2012, Mathematical Programming Computation.

[45]  Guangdong Feng,et al.  A Tensor Based Method for Missing Traffic Data Completion , 2013 .

[46]  Bart Vandereycken,et al.  Low-Rank Matrix Completion by Riemannian Optimization , 2013, SIAM J. Optim..

[47]  Bamdev Mishra,et al.  Fixed-rank matrix factorizations and Riemannian low-rank optimization , 2012, Comput. Stat..

[48]  D. Shen,et al.  Ensemble sparse classification of Alzheimer's disease , 2012, NeuroImage.