Rooted tree statistics from Matula numbers

There is a one-to-one correspondence between natural numbers and rooted trees; the number is called the Matula number of the rooted tree. We show how a large number of properties of trees can be obtained directly from the corresponding Matula number.

[1]  István Lukovits,et al.  On the Definition of the Hyper-Wiener Index for Cycle-Containing Structures , 1995, J. Chem. Inf. Comput. Sci..

[2]  Béla Bollobás,et al.  Graphs of Extremal Weights , 1998, Ars Comb..

[3]  H. Narumi,et al.  Simple Topological Index : A Newly Devised Index Characterizing The Topological Nature of Structural Isomers of Saturated Hydrocarbons , 1984 .

[4]  László A. Székely,et al.  The inverse problem for certain tree parameters , 2009, Discret. Appl. Math..

[5]  Wolfgang Linert,et al.  The Multiplicative Version of the Wiener Index , 2000, J. Chem. Inf. Comput. Sci..

[6]  Ivan Gutman,et al.  On Matula numbers , 1996, Discret. Math..

[7]  Milan Randic,et al.  Algebraic characterization of skeletal branching , 1977 .

[8]  I. Gutman,et al.  Wiener Index of Trees: Theory and Applications , 2001 .

[9]  N. Trinajstic Chemical Graph Theory , 1992 .

[10]  Douglas J. Klein,et al.  Wiener Index Extension by Counting Even/Odd Graph Distances , 2001, J. Chem. Inf. Comput. Sci..

[11]  N. Trinajstic,et al.  The Zagreb Indices 30 Years After , 2003 .

[12]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[13]  M. Randic Novel molecular descriptor for structure—property studies , 1993 .

[14]  Yeong-Nan Yeh,et al.  The Wiener polynomial of a graph , 1996 .

[15]  Tomislav Doslic Vertex-weighted Wiener polynomials for composite graphs , 2008, Ars Math. Contemp..

[16]  Philippe Flajolet,et al.  An introduction to the analysis of algorithms , 1995 .

[17]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[18]  ˇ TomislavDo,et al.  Vertex-Weighted Wiener Polynomials for Composite Graphs , 2008 .

[19]  Aleksandar Ilic,et al.  Generalizations of Wiener Polarity Index and Terminal Wiener Index , 2011, Graphs Comb..

[20]  Hua Wang Mathematical Chemistry Monographs , 2012 .

[21]  I. Gutman,et al.  Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons , 1972 .

[22]  Boris Furtula,et al.  Terminal Wiener index , 2009 .

[23]  D. Cvetkovic,et al.  Graph theory and molecular orbitals , 1974 .

[24]  Ivan Gutman,et al.  Further Properties Derivable from the Matula Number of an Alkane , 1994, J. Chem. Inf. Comput. Sci..

[25]  Maarten Keijzer,et al.  Crossover Bias in Genetic Programming , 2007, EuroGP.

[26]  Gordon G. Cash,et al.  Relationship between the Hosoya polynomial and the hyper-Wiener index , 2002, Appl. Math. Lett..

[27]  Haruo Hosoya,et al.  On some counting polynomials in chemistry , 1988, Discret. Appl. Math..

[28]  I. Gutman Relation between hyper-Wiener and Wiener index , 2002 .

[29]  Hua Wang,et al.  The sum of the distances between the leaves of a tree and the 'semi-regular' property , 2011, Discret. Math..

[30]  Boca Raton CRC HANDBOOK of LUBRICATION (Theory and Practice of Tribology) Volume II Theory & Design , 1983 .