Self‐consistent reaction field calculations of photoelectron binding energies for solvated molecules

The multiconfigurational self‐consistent reaction field (MCSCRF) and the self‐consistent reaction field (SCRF) methods are applied for solvation shifts of molecular photoelectron spectra. Calculations are performed for cavity wave functions of water, benzene, methanol, and formamide surrounded by dielectric continua corresponding to various solvents. The cavity wave functions for single‐ or multiconfigurational closed‐ and open‐shell states are optimized self‐consistently with their reaction fields, using either a continuum approach with one solute molecule embedded in the dielectric medium or a semicontinuum approach with one solute molecule and a solvation shell of molecules surrounded by the dielectric medium. The application of the MCSCRF/SCRF model gives new insight into the effects of a solvent on ionization spectra. The origin of both absolute and differential shifts upon solvation is investigated. This includes studies of local vs delocalized ionization, role of dielectric polarization vs reaction...

[1]  H. Ågren,et al.  Multiple excitations and charge transfer in the ESCA N1s (NO2) spectrum of paranitroaniline. A theoretical and experimental study , 1982 .

[2]  H. Ågren,et al.  The X-ray emission spectrum of water , 1975 .

[3]  G. G. Hall,et al.  A model for the ab initio calculation of some solvent effects , 1974 .

[4]  K. Mikkelsen,et al.  Electron-transfer reactions in solution. An ab initio approach , 1987 .

[5]  R. Kurland,et al.  Microwave Spectrum, Structure, Dipole Moment, and Quadrupole Coupling Constants of Formamide , 1957 .

[6]  G. W. Schnuelle,et al.  Free energy of a charge distribution in concentric dielectric continua , 1975 .

[7]  J. Kirkwood,et al.  The Electrostatic Influence of Substituents on the Dissociation Constants of Organic Acids. II , 1938 .

[8]  Hans Ågren,et al.  Efficient optimization of large scale MCSCF wave functions with a restricted step algorithm , 1987 .

[9]  H. Ågren,et al.  Electronic Structure of Benzene Studied in USX Emission , 1983 .

[10]  H. Siegbahn,et al.  Core Electron Spectroscopy of Negative Ions in Solution , 1984 .

[11]  gren,et al.  Statistical simulations of photoelectron spectral functions for aqueous solutions. , 1988, Physical Review B (Condensed Matter).

[12]  A. Narten Diffraction Pattern and Structure of Liquid Benzene , 1968 .

[13]  A. Yencha,et al.  Penning ionization electron spectroscopy and photo-electron spectroscopy of molecular solids. II. Ammonia and water , 1981 .

[14]  K. Mikkelsen,et al.  Electron transfer reactions dynamically coupled to a dielectric medium: Orientational effects and bridge assistance , 1987 .

[15]  L. Schäfer,et al.  Normal coordinate ab initio force relaxation , 1978 .

[16]  Jean-Louis Rivail,et al.  A quantum chemical approach to dielectric solvent effects in molecular liquids , 1976 .

[17]  K. Morokuma,et al.  A simple model of solvation within the molecular orbital theory , 1975 .

[18]  H. Siegbahn,et al.  Core electron spectroscopy of water solutions , 1986 .

[19]  Hans Ågren,et al.  A basis set investigation for the oxygen 1s ionization potential in H2O , 1977 .

[20]  J. W. Moskowitz,et al.  One-Electron Properties of Near-Hartree-Fock Wavefunctions. I. Water , 1968 .

[21]  R. Manne,et al.  Calculation of chlorine Kα1,2 X-ray emission shifts in molecules , 1975 .

[22]  H. Kleinpoppen,et al.  Inner-shell and X-Ray physics of atoms and solids : [proceedings] , 1981 .

[23]  F. Himpsel,et al.  Electronic structure of hydrogen-bonded H 2 O , 1983 .

[24]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[25]  R. Resta,et al.  Energy Bands in Cubic Ice. Ab Initio Calculation Using the Method of Linear Combination of Molecular Orbitals , 1977 .

[26]  H. Siegbahn,et al.  Core Electron Spectroscopy of Alkali Metal Ions in Solution , 1983 .

[27]  Trygve Helgaker,et al.  A multiconfigurational self‐consistent reaction‐field method , 1988 .

[28]  D. Cruickshank,et al.  The crystal structure of benzene at — 3°C , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[29]  H. Ågren,et al.  Origin of phase transition shifts of ionization energies in water , 1985 .

[30]  H. Ågren,et al.  A self-consistent reaction field approach to liquid photoionization , 1987 .

[31]  M. Born Volumen und Hydratationswärme der Ionen , 1920 .

[32]  W. Lipscomb,et al.  On the crystal structures, residual entropy and dielectric anomaly of methanol , 1952 .

[33]  B. Johansson,et al.  Core-level binding-energy shifts for the metallic elements , 1980 .

[34]  Trygve Helgaker,et al.  Molecular Hessians for large‐scale MCSCF wave functions , 1986 .

[35]  U. Gelius Binding Energies and Chemical Shifts in ESCA , 1974 .

[36]  K. Siegbahn,et al.  ESCA applied to liquids. II. Valence and core electron spectra of formamide , 1974 .

[37]  J. Riga,et al.  An ESCA study of the electronic structure of solid benzene.: Valence levels, core level and shake-up satellites , 1977 .

[38]  H. Ågren,et al.  A statistical model for solvation shifts of core electron binding energies of atomic ions , 1984 .

[39]  K. Siegbahn ESCA applied to free molecules , 1969 .

[40]  H. Ågren,et al.  The extramolecular contributions to the photoelectron and soft x‐ray photon chemical shift in solid and liquid benzene , 1983 .

[41]  J. Pople,et al.  Self‐Consistent Molecular Orbital Methods. IV. Use of Gaussian Expansions of Slater‐Type Orbitals. Extension to Second‐Row Molecules , 1970 .

[42]  Hideki Kambara,et al.  Structure of cyclohexane determined by two independent gas electron-diffraction investigations , 1973 .

[43]  H. Siegbahn,et al.  Angle resolved electron spectroscopy for measurement of surface segregation phenomena in liquids and solutions , 1986 .

[44]  H. Ågren,et al.  Statistical analysis of photoelectron and Auger energy shifts in ionic solutions , 1985 .

[45]  M. Newton Role of ab initio calculations in elucidating properties of hydrated and ammoniated electrons , 1975 .

[46]  L. Pettersson,et al.  Core electron binding energies and auger electron energies of solvated clusters , 1985 .

[47]  L. Onsager Electric Moments of Molecules in Liquids , 1936 .

[48]  H. Siegbahn,et al.  Esca applied to liquids III. ESCA phase shifts in pure and mixed organic solvents , 1975 .

[49]  Lorenzo Resca,et al.  Electronic States and Optical Properties in Cubic Ice , 1973 .

[50]  W. R. Salaneck,et al.  Electronic structure of pendant-group polymers: Molecular-ion states and dielectric properties of poly(2-vinyl pyridine) , 1978 .

[51]  K. Mikkelsen,et al.  Electron Tunneling in Solid-State Electron-Transfer Reactions , 1987 .

[52]  H. Ågren,et al.  An efficient method for the calculation of generalized overlap amplitudes for core photoelectron shake-up spectra , 1987 .

[53]  N. A. Kuebler,et al.  Electronic States of the Amide Group , 1967 .

[54]  Hans Ågren,et al.  MC SCF optimization using the direct, restricted step, second-order norm-extended optimization method , 1984 .

[55]  D. Eastman,et al.  Photoemission Observations of π-d Bonding and Surface Reactions of Adsorbed Hydrocarbons on Ni(111) , 1974 .

[56]  P. Siegbahn,et al.  Gaussian basis sets for the first and second row atoms , 1970 .