Chronic administration of olmesartan attenuates the exaggerated pressor response to glutamate in the rostral ventrolateral medulla of SHR

[1]  I. Armando,et al.  Oral administration of an AT1 receptor antagonist prevents the central effects of angiotensin II in spontaneously hypertensive rats , 2004, Brain Research.

[2]  H. Diener,et al.  The ACCESS Study: Evaluation of Acute Candesartan Cilexetil Therapy in Stroke Survivors , 2003, Stroke.

[3]  A. Sved,et al.  Brainstem mechanisms of hypertension: Role of the rostral ventrolateral medulla , 2003, Current hypertension reports.

[4]  A. Hofman,et al.  The Study on Cognition and Prognosis in the Elderly (SCOPE): principal results of a randomized double-blind intervention trial , 2003, Journal of hypertension.

[5]  T. Saruta,et al.  Rostral Ventrolateral Medulla Neurons of Neonatal Wistar-Kyoto and Spontaneously Hypertensive Rats , 2002, Hypertension.

[6]  A. Goodchild,et al.  Baroreceptor reflex pathways and neurotransmitters: 10 years on , 2002, Journal of hypertension.

[7]  John Q. Wang,et al.  Expression of angiotensin II type 1 (AT(1)) receptor in the rostral ventrolateral medulla in rats. , 2002, Journal of applied physiology.

[8]  M. Nieminen,et al.  For Personal Use. Only Reproduce with Permission from the Lancet Publishing Group , 2022 .

[9]  K. Catt,et al.  International union of pharmacology. XXIII. The angiotensin II receptors. , 2000, Pharmacological reviews.

[10]  K. Hoe,et al.  Chronic peripheral administration of the angiotensin II AT1 receptor antagonist Candesartan blocks brain AT1 receptors , 2000, Brain Research.

[11]  M. Fujishima,et al.  Effects of chronic oral treatment with imidapril and TCV-116 on the responsiveness to angiotensin II in ventrolateral medulla of SHR. , 1999, Journal of hypertension.

[12]  Colin Sumners,et al.  Angiotensin II in central nervous system physiology 1 100 years of Renin. 1 , 1998, Regulatory Peptides.

[13]  M. Fujishima,et al.  Pressor and sympathetic responses to excitatory amino acids are not augmented in the ventrolateral medulla of Dahl salt-sensitive rats , 1997, Brain Research.

[14]  C. Bergamaschi,et al.  Role of the rostral ventrolateral medulla in maintenance of blood pressure in rats with Goldblatt hypertension. , 1995, Hypertension.

[15]  R. Duvoisin,et al.  The metabotropic glutamate receptors: Structure and functions , 1995, Neuropharmacology.

[16]  D. Averill,et al.  Losartan, nonpeptide angiotensin II-type 1 (AT1) receptor antagonist, attenuates pressor and sympathoexcitatory responses evoked by angiotensin II andL-glutamate in rostral ventrolateral medulla , 1994, Brain Research.

[17]  M. Raizada,et al.  Immunohistochemical mapping of angiotensin AT1 receptors in the brain , 1993, Regulatory Peptides.

[18]  D. Averill,et al.  Effect of angiotensin II in ventrolateral medulla of spontaneously hypertensive rats. , 1991, The American journal of physiology.

[19]  J. Bockaert,et al.  Pharmacological and functional characteristics of metabotropic excitatory amino acid receptors. , 1990, Trends in pharmacological sciences.

[20]  M. Mayer,et al.  The physiology of excitatory amino acids in the vertebrate central nervous system , 1987, Progress in Neurobiology.

[21]  M. Rizzo,et al.  Blindsight: A case study and implications by L. Weiskrantz, Oxford University Press, 1986. £ 19.50 (viii + 187 pages) ISBN 9 18 852129 4 , 1987, Trends in Neurosciences.

[22]  M. Fujishima,et al.  Antihypertensive treatment and the responsiveness to glutamate in ventrolateral medulla. , 1998, Hypertension.

[23]  H. Thibodeaux,et al.  Rostral ventrolateral medulla as a site for the central hypertensive action of kinins. , 1994, Hypertension.

[24]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .