Synthesis of new boron complexes: application to transfer hydrogenation of acetophenone derivatives

Boron is essential for healthy plants. Its biochemical role is notfullyunderstoodeven60yearsafteritsrecognitionasanessentialelement, although it is known to be involved in nucleic acidsynthesis, possibly linked to adequate provision of pyrimidinenucleotides. Boron also plays a part in carbohydrate metabolism,hormone action and membrane formation.

[1]  Suning Wang,et al.  Steric and electronic influence on photochromic switching of N,C-chelate four-coordinate organoboron compounds. , 2010, Chemistry.

[2]  C. Redshaw,et al.  Synthesis, structures and luminescent behaviour of tridentate salicylaldiminato-type borate complexes , 2010 .

[3]  S. Yadav,et al.  In Vitro Antibacterial and Antifungal Activities of Some Sulfur–Nitrogen–Oxygen and Oxygen–Nitrogen–Oxygen Donor Bifunctional Tridentate Schiff Bases and Their Boron(III) Complexes , 2010 .

[4]  Suning Wang,et al.  Impact of donor-acceptor geometry and metal chelation on photophysical properties and applications of triarylboranes. , 2009, Accounts of chemical research.

[5]  F. Gabbaï,et al.  Fluoride ion recognition by chelating and cationic boranes. , 2009, Accounts of chemical research.

[6]  Hong Xia,et al.  Synthesis, structure and electroluminescent properties of Schiff-base boron complex with anilido-imine ligand , 2009 .

[7]  H. Yamada,et al.  Phosphonium- and borate-bridged zwitterionic ladder stilbene and its extended analogues. , 2008, Angewandte Chemie.

[8]  Haksoo Han,et al.  A Novel Series of Heteropolynuclear Metallomesogens : Organopalladium Complexes with Ferrocenophane-Containing Ligands , 2008 .

[9]  E. Taş,et al.  The sterically hindered salicylaldimine ligands with their copper(II) metal complexes: Synthesis, spectroscopy, electrochemical and thin-layer spectroelectrochemical features , 2008 .

[10]  G. Bazan,et al.  Design organischer optoelektronischer Materialien durch laterale Borylsubstitution , 2008 .

[11]  G. Bazan,et al.  A new design strategy for organic optoelectronic materials by lateral boryl substitution. , 2008, Angewandte Chemie.

[12]  Yue Wang,et al.  Synthesis and luminescent properties of two Schiff-base boron complexes , 2007 .

[13]  E. Taş,et al.  Synthesis, electrochemical and in situ spectroelectrochemical studies of new transition metal complexes with two new Schiff-bases containing N2O2/N2O4 donor groups , 2007 .

[14]  G. Cosa,et al.  Design and synthesis of a BODIPY-alpha-tocopherol adduct for use as an off/on fluorescent antioxidant indicator. , 2007, Journal of the American Chemical Society.

[15]  Yang Qin,et al.  Synthesis and Characterization of Organoboron Quinolate Polymers with Tunable Luminescence Properties , 2006 .

[16]  Yang Qin,et al.  Luminescence tuning of organoboron quinolates through substituent variation at the 5-position of the quinolato moiety. , 2006, Organic letters.

[17]  A. Wakamiya,et al.  Intramolecular B-N coordination as a scaffold for electron-transporting materials: synthesis and properties of boryl-substituted thienylthiazoles. , 2006, Angewandte Chemie.

[18]  L. Wan,et al.  C-H...F hydrogen bonding: the origin of the self-assemblies of bis(2,2'-difluoro-1,3,2-dioxaborine). , 2006, Langmuir : the ACS journal of surfaces and colloids.

[19]  L. Elviri,et al.  Transfer Hydrogenation of Acetophenone Catalyzed by Half-Sandwich Ruthenium(II) Complexes Containing Amino Amide Ligands. Detection of the Catalytic Intermediates by Electrospray Ionization Mass Spectrometry , 2005 .

[20]  J. Brédas,et al.  Bis-aryl substituted dioxaborines as electron-transport materials: a comparative density functional theory investigation with oxadiazoles and siloles , 2005 .

[21]  P. Chou,et al.  Rational Color Tuning and Luminescent Properties of Functionalized Boron‐Containing 2‐Pyridyl Pyrrolide Complexes , 2005 .

[22]  R. Thummel,et al.  From Blue to Red: Syntheses, Structures, Electronic and Electroluminescent Properties of Tunable Luminescent N,N Chelate Boron Complexes , 2005 .

[23]  T. Ikariya,et al.  Highly efficient chiral metal cluster systems derived from Ru3(CO)12 and chiral diiminodiphosphines for the asymmetric transfer hydrogenation of ketones. , 2003, Chemical communications.

[24]  J. T. F. and,et al.  Catalysts for the Asymmetric Transfer Hydrogenation of Ketones Derived from l-Prolinamide and (p-CymeneRuCl2)2 or (Cp*RhCl2)2 , 2001 .

[25]  Suning Wang Luminescence and Electroluminescence of Al(III), B(III), Be(II) and Zn(II) Complexes with Nitrogen Donors , 2001 .

[26]  K. Rurack,et al.  Molecular Switching in the Near Infrared (NIR) with a Functionalized Boron-Dipyrromethene Dye. , 2001, Angewandte Chemie.

[27]  K. Rurack,et al.  Chiral discrimination with a fluorescent boron–dipyrromethene dye , 2001 .

[28]  M. Weaver,et al.  Materials for organic electroluminescence: aluminium vs. boron , 2000 .

[29]  T. Ikariya,et al.  trans-[RuCl2 (phosphane)2 (1,2-diamine)] and Chiral trans-[RuCl2 (diphosphane)(1,2-diamine)]: Shelf-Stable Precatalysts for the Rapid, Productive, and Stereoselective Hydrogenation of Ketones. , 1998, Angewandte Chemie.

[30]  E. J. Kim,et al.  B-HYDROXYDIISOPINOCAMPHEYLBORANE AS A MILD, CHEMOSELECTIVE REDUCING AGENT FOR ALDEHYDES , 1995 .

[31]  권오운,et al.  B-t-Butoxydiisopinocampheylborane as a Highly Chemoselective Reducing Agent for Aldehydes , 1995 .

[32]  S. Gladiali,et al.  Asymmetric Hydrogen Transfer Reactions Promoted by Homogeneous Transition Metal Catalysts , 1992 .

[33]  E. Corey,et al.  Highly enantioselective borane reduction of ketones catalyzed by chiral oxazaborolidines. Mechanism and synthetic implications , 1987 .

[34]  S. Zderic,et al.  Kinetics of reductions of substituted benzaldehydes with B-alkyl-9-borabicyclo[3.3.1]nonane (9-BBN) , 1982 .