A Moving Grid Finite Element Method for the Simulation of Pattern Generation by Turing Models on Growing Domains

Numerical techniques for moving meshes are many and varied. In this paper we present a novel application of a moving grid finite element method applied to biological problems related to pattern formation where the mesh movement is prescribed through a specific definition to mimic the growth that is observed in nature. Through the use of a moving grid finite element technique, we present numerical computational results illustrating how period doubling behaviour occurs as the domain doubles in size.

[1]  P. Maini,et al.  Reaction and diffusion on growing domains: Scenarios for robust pattern formation , 1999, Bulletin of mathematical biology.

[2]  Dulos,et al.  Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. , 1990, Physical review letters.

[3]  Keith Miller,et al.  Design and Application of a Gradient-Weighted Moving Finite Element Code II: in Two Dimensions , 1998, SIAM J. Sci. Comput..

[4]  M Barinaga Looking to development's future. , 1994, Science.

[5]  Hans Meinhardt,et al.  The Algorithmic Beauty of Sea Shells , 1998, The Virtual Laboratory.

[6]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[7]  M. Baines Moving finite elements , 1994 .

[8]  H. Nijhout,et al.  The development and evolution of butterfly wing patterns , 1991 .

[9]  P K Maini,et al.  Cellular mechanisms of pattern formation in the developing limb. , 1991, International review of cytology.

[10]  J. Schnakenberg,et al.  Simple chemical reaction systems with limit cycle behaviour. , 1979, Journal of theoretical biology.

[11]  Anotida Madzvamuse,et al.  A numerical approach to the study of spatial pattern formation in the ligaments of arcoid bivalves , 2002, Bulletin of mathematical biology.

[12]  Anotida Madzvamuse,et al.  Pigmentation pattern formation in butterflies: experiments and models. , 2003, Comptes rendus biologies.

[13]  I. Epstein,et al.  Modeling of Turing Structures in the Chlorite—Iodide—Malonic Acid—Starch Reaction System , 1991, Science.

[14]  Michael J. Ward,et al.  Numerical Challenges for Resolving Spike Dynamics for Two One‐Dimensional Reaction‐Diffusion Systems , 2003 .

[15]  Steven J. Ruuth Implicit-explicit methods for reaction-diffusion problems in pattern formation , 1995 .

[16]  P. K. Jimack,et al.  Temporal derivatives in the finite-element method on continuously deforming grids , 1991 .

[17]  H. Meinhardt,et al.  A theory of biological pattern formation , 1972, Kybernetik.

[18]  A. Wathen,et al.  A predictive model for color pattern formation in the butterfly wing of {\it Papilio dardanus} , 2002 .

[19]  D. Acheson Elementary Fluid Dynamics , 1990 .

[20]  H. Swinney,et al.  Experimental observation of self-replicating spots in a reaction–diffusion system , 1994, Nature.

[21]  J. Murray,et al.  On pattern formation mechanisms for lepidopteran wing patterns and mammalian coat markings. , 1981, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[22]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[23]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[24]  J. E. Pearson Complex Patterns in a Simple System , 1993, Science.

[25]  Andrew J. Wathen,et al.  A moving grid finite element method applied to a model biological pattern generator , 2003 .

[26]  Keith Miller,et al.  Design and Application of a Gradient-Weighted Moving Finite Element Code I: in One Dimension , 1998, SIAM J. Sci. Comput..

[27]  J. Bard,et al.  How well does Turing's theory of morphogenesis work? , 1974, Journal of theoretical biology.

[28]  S. Kondo,et al.  A reaction–diffusion wave on the skin of the marine angelfish Pomacanthus , 1995, Nature.

[29]  Robert H. Hagen The Development and Evolution of Butterfly Wing Patterns , 1992 .

[30]  J. Boissonade,et al.  Turing-type chemical patterns in the chlorite-iodide-malonic acid reaction , 1991 .

[31]  F. Blom Considerations on the spring analogy , 2000 .

[32]  Andrew J. Wathen,et al.  A model for colour pattern formation in the butterfly wing of Papilio dardanus , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[33]  Philip L. Roe,et al.  A frontal approach for internal node generation in Delaunay triangulations , 1993 .

[34]  Andrew J. Wathen,et al.  Growth patterns of noetiid ligaments: implications of developmental models for the origin of an evolutionary novelty among arcoid bivalves , 2000, Geological Society, London, Special Publications.

[35]  Keith Miller,et al.  Moving Finite Elements. I , 1981 .

[36]  P K Maini,et al.  Stripe formation in juvenile Pomacanthus explained by a generalized turing mechanism with chemotaxis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Youcef Saad,et al.  A Basic Tool Kit for Sparse Matrix Computations , 1990 .