Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction

Epilepsy is a prevalent neurological disorder associated with significant morbidity and mortality, but the only available drug therapies target its symptoms rather than the underlying cause. The process that links brain injury or other predisposing factors to the subsequent emergence of epilepsy is termed epileptogenesis. Substantial research has focused on elucidating the mechanisms of epileptogenesis so as to identify more specific targets for intervention, with the hope of preventing epilepsy before seizures emerge. Recent work has yielded important conceptual advances in this field. We suggest that such insights into the mechanisms of epileptogenesis converge at the level of cortical circuit dysfunction.

[1]  Heinz Beck,et al.  Plasticity of intrinsic neuronal properties in CNS disorders , 2008, Nature Reviews Neuroscience.

[2]  Y. Noam,et al.  Towards an integrated view of HCN channel role in epilepsy , 2011, Current Opinion in Neurobiology.

[3]  A. Coppola,et al.  A pulse rapamycin therapy for infantile spasms and associated cognitive decline , 2011, Neurobiology of Disease.

[4]  M. Ruberg,et al.  Sporadic Infantile Epileptic Encephalopathy Caused by Mutations in PCDH19 Resembles Dravet Syndrome but Mainly Affects Females , 2009, PLoS genetics.

[5]  A. L. Goldin,et al.  Altered Function of the SCN1A Voltage-gated Sodium Channel Leads to γ-Aminobutyric Acid-ergic (GABAergic) Interneuron Abnormalities* , 2010, The Journal of Biological Chemistry.

[6]  D. Binder Neurotrophins in the dentate gyrus. , 2007, Progress in brain research.

[7]  K. Yamakawa,et al.  Nav1.1 mutations cause febrile seizures associated with afebrile partial seizures , 2001, Neurology.

[8]  P. Crino mTOR: A pathogenic signaling pathway in developmental brain malformations. , 2011, Trends in molecular medicine.

[9]  L. Lagae,et al.  De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. , 2001, American journal of human genetics.

[10]  G. Miyoshi,et al.  The Requirement of Nkx2-1 in the Temporal Specification of Cortical Interneuron Subtypes , 2008, Neuron.

[11]  K. Rhodes,et al.  Type I and type II Na+ channel α‐subunit polypeptides exhibit distinct spatial and temporal patterning, and association with auxiliary subunits in rat brain , 1999, The Journal of comparative neurology.

[12]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[13]  J. Dunn,et al.  A New Binding Motif for the Transcriptional Repressor REST Uncovers Large Gene Networks Devoted to Neuronal Functions , 2007, The Journal of Neuroscience.

[14]  A. Mortazavi,et al.  Genome-Wide Mapping of in Vivo Protein-DNA Interactions , 2007, Science.

[15]  P. Crino Focal brain malformations: Seizures, signaling, sequencing , 2009, Epilepsia.

[16]  C. Hoogenraad,et al.  Control of Dendritic Arborization by the Phosphoinositide-3′-Kinase–Akt–Mammalian Target of Rapamycin Pathway , 2005, The Journal of Neuroscience.

[17]  Concha Bielza,et al.  New insights into the classification and nomenclature of cortical GABAergic interneurons , 2013, Nature Reviews Neuroscience.

[18]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[19]  P. Buckmaster,et al.  Rapamycin Suppresses Mossy Fiber Sprouting But Not Seizure Frequency in a Mouse Model of Temporal Lobe Epilepsy , 2011, The Journal of Neuroscience.

[20]  Y. Yaari,et al.  Recruitment of apical dendritic T‐type Ca2+ channels by backpropagating spikes underlies de novo intrinsic bursting in hippocampal epileptogenesis , 2007, The Journal of physiology.

[21]  M. Scanziani,et al.  Enforcement of Temporal Fidelity in Pyramidal Cells by Somatic Feed-Forward Inhibition , 2001, Science.

[22]  D. Coulter,et al.  Dentate granule cell GABAA receptors in epileptic hippocampus: enhanced synaptic efficacy and altered pharmacology , 2003, The European journal of neuroscience.

[23]  Arnold R. Kriegstein,et al.  Is there more to gaba than synaptic inhibition? , 2002, Nature Reviews Neuroscience.

[24]  Shumei S. Sun,et al.  MRI abnormalities following febrile status epilepticus in children , 2012, Neurology.

[25]  I. Scheffer,et al.  Enteroviruses in chronic fatigue syndrome: “now you see them, now you don’t” , 2003, Journal of neurology, neurosurgery, and psychiatry.

[26]  Í. Lopes-Cendes,et al.  Expression Profile of Lgi1 Gene in Mouse Brain During Development , 2008, Journal of Molecular Neuroscience.

[27]  Wolfgang Löscher,et al.  Prevention or Modification of Epileptogenesis after Brain Insults: Experimental Approaches and Translational Research , 2010, Pharmacological Reviews.

[28]  M. Putt,et al.  Protracted Postnatal Development of Sparse, Specific Dentate Granule Cell Activation in the Mouse Hippocampus , 2013, The Journal of Neuroscience.

[29]  H. Onda,et al.  Astrocyte‐specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures , 2002, Annals of neurology.

[30]  Jan A Gorter,et al.  Finding a better drug for epilepsy: The mTOR pathway as an antiepileptogenic target , 2012, Epilepsia.

[31]  M. Calcagnotto,et al.  Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy , 2005, Nature Neuroscience.

[32]  A. George,et al.  Nonfunctional SCN1A Is Common in Severe Myoclonic Epilepsy of Infancy , 2006, Epilepsia.

[33]  Stéphanie Baulac,et al.  Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2 , 2000, Nature Genetics.

[34]  Roland Krueppel,et al.  Dendritic Integration in Hippocampal Dentate Granule Cells , 2011, Neuron.

[35]  M. Wong Mammalian target of rapamycin (mTOR) inhibition as a potential antiepileptogenic therapy: From tuberous sclerosis to common acquired epilepsies , 2010, Epilepsia.

[36]  C. Houser Interneurons of the dentate gyrus: an overview of cell types, terminal fields and neurochemical identity. , 2007, Progress in brain research.

[37]  K. Yamakawa,et al.  A homozygous mutation of voltage‐gated sodium channel βI gene SCN1B in a patient with Dravet syndrome , 2012, Epilepsia.

[38]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[39]  J. Naegele,et al.  Differentiation and Functional Incorporation of Embryonic Stem Cell-Derived GABAergic Interneurons in the Dentate Gyrus of Mice with Temporal Lobe Epilepsy , 2012, The Journal of Neuroscience.

[40]  P. Striano,et al.  Genetics: Mutations in mTOR pathway linked to megalencephaly syndromes , 2012, Nature Reviews Neurology.

[41]  Richard Miles,et al.  Interneuron Diversity series: Fast in, fast out – temporal and spatial signal processing in hippocampal interneurons , 2004, Trends in Neurosciences.

[42]  Andrew Escayg,et al.  Sodium channel SCN1A and epilepsy: Mutations and mechanisms , 2010, Epilepsia.

[43]  Asla Pitkänen,et al.  Identification of new epilepsy treatments: Issues in preclinical methodology , 2012, Epilepsia.

[44]  A. Spauschus,et al.  Clinical, genetic, and expression studies of mutations in the potassium channel gene KCNA1 reveal new phenotypic variability , 2000, Annals of neurology.

[45]  William A Catterall,et al.  Temperature- and age-dependent seizures in a mouse model of severe myoclonic epilepsy in infancy , 2009, Proceedings of the National Academy of Sciences.

[46]  M. Wong Mechanisms of Epileptogenesis in Tuberous Sclerosis Complex and Related Malformations of Cortical Development with Abnormal Glioneuronal Proliferation , 2008, Epilepsia.

[47]  D. Contreras,et al.  Impaired Fast-Spiking, Suppressed Cortical Inhibition, and Increased Susceptibility to Seizures in Mice Lacking Kv3.2 K+ Channel Proteins , 2000, The Journal of Neuroscience.

[48]  Fotios Pasiouras Recent Developments and Future Challenges , 2012 .

[49]  R. Dingledine,et al.  Neurological disease: listening to gene silencers. , 2001, Molecular interventions.

[50]  Jian Jhen Chen,et al.  Upregulation of a T-Type Ca2+ Channel Causes a Long-Lasting Modification of Neuronal Firing Mode after Status Epilepticus , 2002, The Journal of Neuroscience.

[51]  B. Murphy,et al.  Excessive Activation of mTOR in Postnatally Generated Granule Cells Is Sufficient to Cause Epilepsy , 2012, Neuron.

[52]  Richard M Myers,et al.  Network: from Single Conserved Sites to Genome-wide Repertoire Comparative Genomics Modeling of the Nrsf/rest Repressor Material Supplemental , 2022 .

[53]  D. Coulter,et al.  Massive and Specific Dysregulation of Direct Cortical Input to the Hippocampus in Temporal Lobe Epilepsy , 2006, The Journal of Neuroscience.

[54]  J. A. Payne,et al.  Mechanism of Activity-Dependent Downregulation of the Neuron-Specific K-Cl Cotransporter KCC2 , 2004, The Journal of Neuroscience.

[55]  A. Pitkänen,et al.  Mechanisms of epileptogenesis and potential treatment targets , 2011, The Lancet Neurology.

[56]  T. Kosaka,et al.  Patterns of expression of neuropeptides in GABAergic nonprincipal neurons in the mouse hippocampus: Quantitative analysis with optical disector , 2003, The Journal of comparative neurology.

[57]  Hao Wang,et al.  Deletion of the KV1.1 Potassium Channel Causes Epilepsy in Mice , 1998, Neuron.

[58]  G. Mandel,et al.  REST and Its Corepressors Mediate Plasticity of Neuronal Gene Chromatin throughout Neurogenesis , 2005, Cell.

[59]  J. H. Kim,et al.  Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy , 1989, Brain Research.

[60]  P. Buckmaster,et al.  Rapamycin suppresses axon sprouting by somatostatin interneurons in a mouse model of temporal lobe epilepsy , 2011, Epilepsia.

[61]  M. Avoli,et al.  GABAergic synchronization in the limbic system and its role in the generation of epileptiform activity , 2011, Progress in Neurobiology.

[62]  S. Siegelbaum,et al.  HCN1 Channels Constrain Synaptically Evoked Ca2+ Spikes in Distal Dendrites of CA1 Pyramidal Neurons , 2007, Neuron.

[63]  Ethan M. Goldberg,et al.  Rapid developmental maturation of neocortical FS cell intrinsic excitability. , 2011, Cerebral cortex.

[64]  J. L. Haines,et al.  Partial and generalized epilepsy with febrile seizures plus and a novel SCN1A mutation , 2001, Neurology.

[65]  T. Baram,et al.  Epileptogenesis after prolonged febrile seizures: Mechanisms, biomarkers and therapeutic opportunities , 2011, Neuroscience Letters.

[66]  G. Jackson,et al.  Intrinsic epileptogenicity of cortical tubers revealed by intracranial EEG monitoring , 2012, Neurology.

[67]  Istvan Mody,et al.  The multifaceted role of inhibition in epilepsy: seizure-genesis through excessive GABAergic inhibition in autosomal dominant nocturnal frontal lobe epilepsy , 2008, Current opinion in neurology.

[68]  P. Buckmaster,et al.  Inhibition of the Mammalian Target of Rapamycin Signaling Pathway Suppresses Dentate Granule Cell Axon Sprouting in a Rodent Model of Temporal Lobe Epilepsy , 2009, The Journal of Neuroscience.

[69]  Lori L. Isom,et al.  Mice Lacking Sodium Channel β1 Subunits Display Defects in Neuronal Excitability, Sodium Channel Expression, and Nodal Architecture , 2004, The Journal of Neuroscience.

[70]  D. Amaral,et al.  An experimental analysis of the origins of somatostatin-like immunoreactivity in the dentate gyrus of the rat , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[71]  M. Mendioroz Iriarte,et al.  Epigenetics and epilepsy , 2015 .

[72]  Quanxin Wang,et al.  Multiple Distinct Subtypes of GABAergic Neurons in Mouse Visual Cortex Identified by Triple Immunostaining , 2007, Frontiers in neuroanatomy.

[73]  K. Wu,et al.  Increased dendritic excitability in hippocampal ca1 in vivo in the kainic acid model of temporal lobe epilepsy: a study using current source density analysis , 2003, Neuroscience.

[74]  D. Holtzman,et al.  Abnormal glutamate homeostasis and impaired synaptic plasticity and learning in a mouse model of tuberous sclerosis complex , 2007, Neurobiology of Disease.

[75]  William A. Catterall,et al.  Differential subcellular localization of the RI and RII Na+ channel subtypes in central neurons , 1989, Neuron.

[76]  M. Avoli,et al.  Jasper's basic mechanisms of the epilepsies , 2012 .

[77]  Zoltan Nusser,et al.  Cell-Type-Dependent Molecular Composition of the Axon Initial Segment , 2008, The Journal of Neuroscience.

[78]  A. Galanopoulou Mutations affecting GABAergic signaling in seizures and epilepsy , 2010, Pflügers Archiv - European Journal of Physiology.

[79]  I. Scheffer,et al.  The spectrum of SCN1A-related infantile epileptic encephalopathies. , 2007, Brain : a journal of neurology.

[80]  Ivan Soltesz,et al.  Modeling the dentate gyrus. , 2007, Progress in brain research.

[81]  D. Coulter,et al.  Hippocampal CA1 Circuitry Dynamically Gates Direct Cortical Inputs Preferentially at Theta Frequencies , 2005, The Journal of Neuroscience.

[82]  H. Beck,et al.  The dentate gyrus as a regulated gate for the propagation of epileptiform activity. , 1992, Epilepsy research. Supplement.

[83]  L. Zeng,et al.  The Mammalian Target of Rapamycin Signaling Pathway Mediates Epileptogenesis in a Model of Temporal Lobe Epilepsy , 2009, The Journal of Neuroscience.

[84]  A. Gingras,et al.  A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[85]  N. Nukina,et al.  A Functional Null Mutation of SCN1B in a Patient with Dravet Syndrome , 2009, The Journal of Neuroscience.

[86]  Steven Petrou,et al.  Truncation of the GABA(A)-receptor gamma2 subunit in a family with generalized epilepsy with febrile seizures plus. , 2002, American journal of human genetics.

[87]  H. Jasper,et al.  Basic Mechanisms of the Epilepsies , 1971, Journal of the Royal College of Physicians of London.

[88]  I. Scheffer,et al.  Temporal lobe epilepsy and GEFS+ phenotypes associated with SCN1B mutations. , 2006, Brain : a journal of neurology.

[89]  I. Scheffer,et al.  Translational research in epilepsy genetics: sodium channels in man to interneuronopathy in mouse. , 2009, Archives of neurology.

[90]  Hiroyuki Miyamoto,et al.  Nav1.1 Localizes to Axons of Parvalbumin-Positive Inhibitory Interneurons: A Circuit Basis for Epileptic Seizures in Mice Carrying an Scn1a Gene Mutation , 2007, The Journal of Neuroscience.

[91]  I. Soltesz Brief history of cortico‐hippocampal time with a special reference to the direct entorhinal input to CA1 , 1995, Hippocampus.

[92]  P. Barsi,et al.  Hippocampal Sclerosis in Severe Myoclonic Epilepsy in Infancy: A Retrospective MRI Study , 2005, Epilepsia.

[93]  B. Meldrum Physiological Changes During Prolonged Seizures and Epileptic Brain Damage , 1978, Neuropadiatrie.

[94]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[95]  Carlo Nobile,et al.  Lateral temporal lobe epilepsies: Clinical and genetic features , 2009, Epilepsia.

[96]  K. Yamakawa,et al.  A Nonsense Mutation of the Sodium Channel Gene SCN2A in a Patient with Intractable Epilepsy and Mental Decline , 2004, The Journal of Neuroscience.

[97]  J. Rubenstein,et al.  Specific deletion of NaV1.1 sodium channels in inhibitory interneurons causes seizures and premature death in a mouse model of Dravet syndrome , 2012, Proceedings of the National Academy of Sciences.

[98]  Y. Ben-Ari,et al.  Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy , 2001, Nature Neuroscience.

[99]  J. Parent,et al.  Abnormal neuronal patterning occurs during early postnatal brain development of Scn1b-null mice and precedes hyperexcitability , 2012, Proceedings of the National Academy of Sciences.

[100]  A. L. Goldin,et al.  A gain-of-function mutation in the sodium channel gene Scn2a results in seizures and behavioral abnormalities , 2001, Neuroscience.

[101]  Christine Cooper,et al.  A critical perspective , 2013 .

[102]  P. Striano,et al.  Neuroimaging and neuropathology of Dravet syndrome , 2011, Epilepsia.

[103]  Massimo Mantegazza,et al.  Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy , 2006, Nature Neuroscience.

[104]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[105]  Y. Ben-Ari Excitatory actions of gaba during development: the nature of the nurture , 2002, Nature Reviews Neuroscience.

[106]  Laura A. Ewell,et al.  Frequency-Tuned Distribution of Inhibition in the Dentate Gyrus , 2010, The Journal of Neuroscience.

[107]  Y. Ben-Ari,et al.  What is GABAergic Inhibition? How Is it Modified in Epilepsy? , 2000, Epilepsia.

[108]  D. Reiss,et al.  The Nature of Nurture , 2013, Journal of family psychology : JFP : journal of the Division of Family Psychology of the American Psychological Association.

[109]  Ethan M. Goldberg,et al.  Hippocampal microcircuit dynamics probed using optical imaging approaches , 2011, The Journal of physiology.

[110]  M. Moser,et al.  Pattern Separation in the Dentate Gyrus and CA3 of the Hippocampus , 2007, Science.

[111]  P. Striano,et al.  Brain MRI Findings in Severe Myoclonic Epilepsy in Infancy and Genotype–Phenotype Correlations , 2007, Epilepsia.

[112]  D. Amaral,et al.  The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). , 2007, Progress in brain research.

[113]  M. Wong,et al.  Therapeutic role of mammalian target of rapamycin (mTOR) inhibition in preventing epileptogenesis , 2011, Neuroscience Letters.

[114]  E. Kobayashi,et al.  Magnetic resonance imaging evidence of hippocampal sclerosis in asymptomatic, first-degree relatives of patients with familial mesial temporal lobe epilepsy. , 2002, Archives of neurology.

[115]  Yunfei Huang,et al.  Pharmacological inhibition of the mammalian target of rapamycin pathway suppresses acquired epilepsy , 2010, Neurobiology of Disease.

[116]  C. Mahaffey,et al.  A novel Akt3 mutation associated with enhanced kinase activity and seizure susceptibility in mice. , 2011, Human molecular genetics.

[117]  B. McNaughton,et al.  Sparse, environmentally selective expression of Arc RNA in the upper blade of the rodent fascia dentata by brief spatial experience , 2005, Hippocampus.

[118]  K. Lukasiuk,et al.  Post-treatment with rapamycin does not prevent epileptogenesis in the amygdala stimulation model of temporal lobe epilepsy , 2012, Neuroscience Letters.

[119]  D. Ragsdale How do mutant Nav1.1 sodium channels cause epilepsy? , 2008, Brain Research Reviews.

[120]  Avtar Roopra,et al.  2-Deoxy-D-glucose reduces epilepsy progression by NRSF-CtBP–dependent metabolic regulation of chromatin structure , 2006, Nature Neuroscience.

[121]  I. Soltesz,et al.  On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy , 2013, Nature Communications.

[122]  S. Gabriel,et al.  De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly , 2012, Nature Genetics.

[123]  Eleonora Aronica,et al.  Inhibition of mammalian target of rapamycin reduces epileptogenesis and blood–brain barrier leakage but not microglia activation , 2012, Epilepsia.

[124]  J. L. Stringer,et al.  The dentate gyrus as a control point for seizures in the hippocampus and beyond. , 1992, Epilepsy research. Supplement.

[125]  R. Dingledine,et al.  Altered Histone Acetylation at Glutamate Receptor 2 and Brain-Derived Neurotrophic Factor Genes Is an Early Event Triggered by Status Epilepticus , 2002, The Journal of Neuroscience.

[126]  Raymond Dingledine,et al.  Transcriptional repression by REST: recruitment of Sin3A and histone deacetylase to neuronal genes , 1999, Nature Neuroscience.

[127]  Wei Zhang,et al.  Surviving Hilar Somatostatin Interneurons Enlarge, Sprout Axons, and Form New Synapses with Granule Cells in a Mouse Model of Temporal Lobe Epilepsy , 2009, The Journal of Neuroscience.

[128]  M. Wilson,et al.  Dentate Gyrus NMDA Receptors Mediate Rapid Pattern Separation in the Hippocampal Network , 2007, Science.

[129]  Bingren Hu,et al.  Alterations in Mammalian Target of Rapamycin Signaling Pathways after Traumatic Brain Injury , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[130]  E. Nakagawa,et al.  Missense mutation of the sodium channel gene SCN2A causes Dravet syndrome , 2009, Brain and Development.

[131]  J. Hopper,et al.  Familial temporal lobe epilepsy: A common disorder identified in twins , 1996, Annals of neurology.

[132]  Maria K. Lehtinen,et al.  Somatic Activation of AKT3 Causes Hemispheric Developmental Brain Malformations , 2012, Neuron.

[133]  D. Coulter,et al.  Differential epilepsy-associated alterations in postsynaptic GABA(A) receptor function in dentate granule and CA1 neurons. , 1997, Journal of neurophysiology.

[134]  D. Sabatini,et al.  mTOR Signaling in Growth Control and Disease , 2012, Cell.

[135]  I. Scheffer,et al.  Is the ketogenic diet effective in specific epilepsy syndromes? , 2012, Epilepsy Research.

[136]  L. Acsády,et al.  Postsynaptic targets of somatostatin-immunoreactive interneurons in the rat hippocampus , 1999, Neuroscience.

[137]  P. Somogyi,et al.  Defined types of cortical interneurone structure space and spike timing in the hippocampus , 2005, The Journal of physiology.

[138]  F. Cendes,et al.  Familial temporal lobe epilepsy , 1998, Neurology.

[139]  Ivan Soltesz,et al.  Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability , 2001, Nature Medicine.

[140]  G. Holmes,et al.  Tuberous Sclerosis Complex and Epilepsy: Recent Developments and Future Challenges , 2007, Epilepsia.

[141]  Julio Cesar Sampaio P. Leite,et al.  Reactive synaptogenesis and neuron densities for neuropeptide Y, somatostatin, and glutamate decarboxylase immunoreactivity in the epileptogenic human fascia dentata , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[142]  R. S. Sloviter,et al.  Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. , 1987, Science.

[143]  D. Gutmann,et al.  Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex , 2008, Annals of neurology.

[144]  Jacob G. Bernstein,et al.  Optogenetic tools for analyzing the neural circuits of behavior , 2011, Trends in Cognitive Sciences.

[145]  E. Shohami,et al.  Rapamycin is a neuroprotective treatment for traumatic brain injury , 2007, Neurobiology of Disease.

[146]  Grady Booch,et al.  The Human Experience , 2012, IEEE Software.

[147]  D. Coulter,et al.  Functional regulation of the dentate gyrus by GABA-mediated inhibition. , 2007, Progress in brain research.

[148]  G Buzsáki,et al.  GABAergic Cells Are the Major Postsynaptic Targets of Mossy Fibers in the Rat Hippocampus , 1998, The Journal of Neuroscience.

[149]  Jens Hjerling-Leffler,et al.  The Cell-Intrinsic Requirement of Sox6 for Cortical Interneuron Development , 2009, Neuron.

[150]  Wei Zhang,et al.  Increased Excitatory Synaptic Input to Granule Cells from Hilar and CA3 Regions in a Rat Model of Temporal Lobe Epilepsy , 2012, The Journal of Neuroscience.

[151]  E. Callaway,et al.  Immunochemical characterization of inhibitory mouse cortical neurons: Three chemically distinct classes of inhibitory cells , 2010, The Journal of comparative neurology.

[152]  Ethan M. Goldberg,et al.  K+ Channels at the Axon Initial Segment Dampen Near-Threshold Excitability of Neocortical Fast-Spiking GABAergic Interneurons , 2008, Neuron.

[153]  N. Belluardo,et al.  Neuronal Expression of Zinc Finger Transcription Factor REST/NRSF/XBR Gene , 1998, The Journal of Neuroscience.

[154]  Y. Yaari,et al.  Initiation of network bursts by Ca2+‐dependent intrinsic bursting in the rat pilocarpine model of temporal lobe epilepsy , 2001, The Journal of physiology.

[155]  Y. Jan,et al.  Activity- and mTOR-Dependent Suppression of Kv1.1 Channel mRNA Translation in Dendrites , 2006, Science.

[156]  I. Scheffer,et al.  Navigating the channels and beyond: unravelling the genetics of the epilepsies , 2008, The Lancet Neurology.

[157]  I. Módy,et al.  Enhanced propagation of epileptiform activity through the kindled dentate gyrus. , 1998, Journal of neurophysiology.

[158]  A. Brooks-Kayal,et al.  Alteration of epileptogenesis genes , 2009, Neurotherapeutics.

[159]  Hemal R. Pathak,et al.  Disrupted Dentate Granule Cell Chloride Regulation Enhances Synaptic Excitability during Development of Temporal Lobe Epilepsy , 2007, The Journal of Neuroscience.

[160]  S. Baraban,et al.  The promise of an interneuron‐based cell therapy for epilepsy , 2011, Developmental neurobiology.

[161]  J. Magee Dendritic lh normalizes temporal summation in hippocampal CA1 neurons. , 1999, Nature neuroscience.

[162]  M. Frotscher,et al.  Afferent and efferent synaptic conncetions sof somatostatin‐immunoreactive neurons in the rat fascia dentata , 1990, The Journal of comparative neurology.

[163]  F. Dudek,et al.  Epileptogenesis in the dentate gyrus: a critical perspective. , 2007, Progress in brain research.

[164]  G. Augustine,et al.  Novel Repression of Kcc2 Transcription by REST–RE-1 Controls Developmental Switch in Neuronal Chloride , 2009, The Journal of Neuroscience.

[165]  N. Temkin Preventing and treating posttraumatic seizures: The human experience , 2009, Epilepsia.

[166]  L. Saksida,et al.  A Functional Role for Adult Hippocampal Neurogenesis in Spatial Pattern Separation , 2009, Science.

[167]  K. Deisseroth,et al.  Optogenetic investigation of neural circuits underlying brain disease in animal models , 2012, Nature Reviews Neuroscience.

[168]  C. Bernard,et al.  Neuron‐restrictive silencer factor‐mediated hyperpolarization‐activated cyclic nucleotide gated channelopathy in experimental temporal lobe epilepsy , 2011, Annals of neurology.

[169]  E. Lothman,et al.  An in vitro study of focal epileptogenesis in combined hippocampal-parahippocampal slices , 1993, Epilepsy Research.

[170]  A. Becker,et al.  Rapid Loss of Dendritic HCN Channel Expression in Hippocampal Pyramidal Neurons following Status Epilepticus , 2011, The Journal of Neuroscience.

[171]  M. S. Kelley,et al.  The NINDS Epilepsy Research Benchmarks , 2009, Epilepsia.

[172]  W. Löscher,et al.  Disease-Modifying Effects of Phenobarbital and the NKCC1 Inhibitor Bumetanide in the Pilocarpine Model of Temporal Lobe Epilepsy , 2010, The Journal of Neuroscience.

[173]  James O McNamara,et al.  Molecular Signaling Mechanisms Underlying Epileptogenesis , 2006, Science's STKE.

[174]  M. Mehler,et al.  Epigenetic mechanisms underlying human epileptic disorders and the process of epileptogenesis , 2010, Neurobiology of Disease.

[175]  D. Johnston,et al.  Acquired Dendritic Channelopathy in Temporal Lobe Epilepsy , 2004, Science.