Modeling Marketing Dynamics by Time Series Econometrics

This paper argues that time-series econometrics provides valuable tools and opens exciting research opportunities to marketing researchers. It allows marketing researchers to advance traditional modeling and estimation approaches by incorporating dynamic processes to answer new important research questions. The authors discuss the challenges facing time-series modelers in marketing, provide an overview of recent methodological developments and several applications, and highlight fruitful areas for future research. This discussion is based on the First Annual Conference on ‘Modeling Marketing Dynamics by Time Series Econometrics’ at the Tuck School of Business at Dartmouth, Hanover, New Hampshire, USA on September 16–17, 2004.

[1]  Dominique M. Hanssens,et al.  The Persistence of Marketing Effects on Sales , 1995 .

[2]  Scott A. Neslin,et al.  The Determinants of Pre- and Postpromotion Dips in Sales of Frequently Purchased Goods , 2004 .

[3]  J. Durbin,et al.  Techniques for Testing the Constancy of Regression Relationships Over Time , 1975 .

[4]  Michael D. Geurts,et al.  Comparing the Box-Jenkins Approach with the Exponentially Smoothed Forecasting Model Application to Hawaii Tourists , 1975 .

[5]  Philip Hans Franses,et al.  On the Use of Econometric Models for Policy Simulation in Marketing , 2005 .

[6]  Dominique M. Hanssens,et al.  An Econometric Study of Recruitment Marketing in the U.S. Navy , 1983 .

[7]  Donald R. Lehmann,et al.  Assessing Marketing Strategy Performance , 2004 .

[8]  Hermann Simon,et al.  ADPULS: An Advertising Model with Wearout and Pulsation , 1982 .

[9]  V. Rao,et al.  Structural Analysis of Competitive Behavior: New Empirical Industrial Organization Methods in Marketing , 2001 .

[10]  E. Ghysels,et al.  There is a Risk-Return Tradeoff after All , 2004 .

[11]  Robert B. Litterman Forecasting and policy analysis with Bayesian vector autoregression models , 1984 .

[12]  Christophe Croux,et al.  On The Predictive Content Of Production Surveys: A Pan-European Study , 2004 .

[13]  Prasad A. Naik,et al.  Planning Media Schedules in the Presence of Dynamic Advertising Quality , 1998 .

[14]  Peter E. Rossi,et al.  Structural Modeling and Policy Simulation , 2005 .

[15]  Diagnostics, Expectations, and Endogeneity , 2005 .

[16]  Dominique M. Hanssens,et al.  Persistence Modeling for Assessing Marketing Strategy Performance , 2003 .

[17]  Markus Christen,et al.  Using Market-Level Data to Understand Promotion Effects in a Nonlinear Model , 1997 .

[18]  Manfred Deistler,et al.  Time Series Econometrics , 2019, Machine Learning and Big Data with kdb+/q.

[19]  Prasad A. Naik,et al.  Estimating the Half-life of Advertisements , 1999 .

[20]  Craig S. Hakkio,et al.  Cointegration: how short is the long run? , 1991 .

[21]  Bart J. Bronnenberg,et al.  The Emergence of Market Structure in New Repeat-Purchase Categories: The Interplay of Market Share and Retailer Distribution , 2000 .

[22]  Dominique M. Hanssens,et al.  Do Promotions Benefit Manufacturers, Retailers, or Both? , 2002, Manag. Sci..

[23]  Dominique M. Hanssens,et al.  The Category-Demand Effects of Price Promotions , 2000 .

[24]  Dominique M. Hanssens,et al.  New Products, Sales Promotions, and Firm Value: The Case of the Automobile Industry , 2004 .

[25]  Natalie Mizik,et al.  Are Physicians "Easy Marks"? Quantifying the Effects of Detailing and Sampling on New Prescriptions , 2004, Manag. Sci..

[26]  Koen Pauwels,et al.  Who Benefits from Store Brand Entry , 2004 .

[27]  K. Pauwels,et al.  Retail Price Drivers and their Financial Consequences , 2003 .

[28]  K. Pauwels How Dynamic Consumer Response, Competitor Response, Company Support, and Company Inertia Shape Long-Term Marketing Effectiveness , 2004 .

[29]  Jaap E. Wieringa,et al.  Competitive reaction- and feedback effects based on VARX models of pooled store data , 2005 .

[30]  John D. C. Little,et al.  Feature Article - Aggregate Advertising Models: The State of the Art , 1979, Oper. Res..

[31]  Dominique M. Hanssens,et al.  Competitive Reactions to Advertising and Promotion Attacks , 2005 .

[32]  Maurice W. Sasieni,et al.  Optimal Advertising Expenditure , 1971 .

[33]  Richard M. Helmer,et al.  An Exposition of the Box-Jenkins Transfer Function Analysis with an Application to the Advertising-Sales Relationship , 1977 .

[34]  Prasad A. Naik,et al.  Understanding the Impact of Synergy in Multimedia Communications , 2003 .

[35]  Harald J. van Heerde,et al.  Marketing Models and the Lucas Critique , 2004 .

[36]  E. Ghysels,et al.  Why Do Absolute Returns Predict Volatility So Well , 2006 .

[37]  Donald R. Lehmann,et al.  The Long-Term Impact of Promotion and Advertising on Consumer Brand Choice , 1997 .

[38]  Robert B. Litterman Above-average national growth in 1985 and 1986 , 1984 .

[39]  Dominique M. Hanssens,et al.  Time-series models in marketing:: Past, present and future , 2000 .

[40]  A NaikPrasad,et al.  Planning Marketing-Mix Strategies in the Presence of Interaction Effects , 2005 .

[41]  Maurice W. Sasieni,et al.  Optimal Advertising Strategies , 1989 .

[42]  Dominique M. Hanssens,et al.  The Long-Term Effects of Price Promotions on Category Incidence, Brand Choice, and Purchase Quantity , 2002 .

[43]  Eric T. Bradlow,et al.  Data pruning in consumer choice models , 2006 .

[44]  Inge Geyskens,et al.  How Cannibalistic is the Internet Channel , 2002 .

[45]  Frank T. Magiera,et al.  There Is a Risk–Return Trade-Off After All , 2005 .

[46]  Bart J. Bronnenberg,et al.  The Periodicity of Competitor Pricing , 2004 .

[47]  C. Croux,et al.  Decomposing Granger Causality Over the Spectrum , 2004 .

[48]  Jeremy T. Fox,et al.  Recent Advances in Structural Econometric Modeling: Dynamics, Product Positioning and Entry , 2005 .

[49]  Dennis Fok,et al.  A Hierarchical Bayes Error Correction Model to Explain Dynamic Effects of Price Changes , 2004 .

[50]  Donald R. Lehmann,et al.  Metrics for Making Marketing Matter , 2004 .

[51]  Robert Raeside Market response models: econometric and time series analysis (second edition) , 2005 .

[52]  Peter E. Rossi,et al.  There Is No Aggregation Bias: Why Macro Logit Models Work , 1991 .

[53]  Melvin J. Hinich,et al.  Time Series Analysis by State Space Methods , 2001 .

[54]  P. Franses,et al.  A Hierarchical Bayes Error Correction Model to Explain Dynamic Efiects of Promotions on Sales , 2004 .

[55]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[56]  Eric Ghysels,et al.  Série Scientifique Scientific Series the Midas Touch: Mixed Data Sampling Regression Models the Midas Touch: Mixed Data Sampling Regression Models* , 2022 .

[57]  M. Pesaran,et al.  Estimating Long-Run Relationships From Dynamic Heterogeneous Panels , 1995 .

[58]  K. Raman,et al.  Planning Marketing-Mix Strategies in the Presence of Interaction Effects , 2005 .

[59]  Leonard J. Parsons,et al.  The Product Life Cycle and Time-Varying Advertising Elasticities , 1975 .

[60]  Robert P. Leone Generalizing What Is Known About Temporal Aggregation and Advertising Carryover , 1995 .

[61]  Dominique M. Hanssens,et al.  Advertising Spending and Market Capitalization , 2004 .

[62]  Dominique M. Hanssens,et al.  Long-run effects of price promotions in scanner markets , 1998 .

[63]  Bart J. Bronnenberg,et al.  The periodicity of competitor pricing. (revision invited at Journal of Marketing Research) , 2004 .

[64]  Jaap E. Wieringa,et al.  Combining time series and cross sectional data for the analysis of dynamic marketing systems , 2003 .

[65]  Dominique M. Hanssens,et al.  Market Response Models: Econometric and Time Series Analysis , 1989 .

[66]  Philip M. Parker,et al.  Weathering Tight Economic Times: The Sales Evolution of Consumer Durables Over the Business Cycle , 2003 .

[67]  Dominique M. Hanssens,et al.  Sustained Spending and Persistent Response: A New Look at Long-Term Marketing Profitability , 1999 .

[68]  Inge Geyskens,et al.  How cannibalistic is the internet channel? A study of the newspaper industry in the United Kingdom and the Netherlands , 2002 .

[69]  Rick L. Andrews,et al.  An experimental investigation of scanner data preparation strategies for consumer choice models , 2005 .

[70]  G. Owen Multilinear Extensions of Games , 1972 .