Low Complexity Soft Decision Decoding Algorithms for Reed-Solomon Codes

We propose a method to represent non-binary error patterns for Reed-Solomon codes using a trellis. All error patterns are sorted according to their Euclidean distances from the received vector. The decoder searches through the trellis until it finds a codeword. This results in a soft-decision maximum likelihood algorithm with lower complexity compared to other known MLD methods. The proposed MLD algorithm is subsequently modified to further simplify complexity, reflecting in a slight reduction in the error performance. key words: Reed-Solomon code, soft decision decoding

[1]  G. David Forney,et al.  Coset codes-II: Binary lattices and related codes , 1988, IEEE Trans. Inf. Theory.

[2]  Kees Schouhamer-Immink Coding Techniques for Digital Recorders , 1991 .

[3]  Patrick A. H. Bours,et al.  On maximum likelihood soft-decision decoding of binary linear codes , 1993, IEEE Trans. Inf. Theory.

[4]  Stephen B. Wicker,et al.  Reed-Solomon Codes and Their Applications , 1999 .

[5]  Douglas J. Muder Minimal trellises for block codes , 1988, IEEE Trans. Inf. Theory.

[6]  Michael B. Pursley Frequency-hop transmission for satellite packet switching and terrestrial packet radio networks , 1986, IEEE Trans. Inf. Theory.

[7]  Ulrich K. Sorger A new Reed-Solomon code decoding algorithm based on Newton's interpolation , 1993, IEEE Trans. Inf. Theory.

[8]  Michael B. Pursley,et al.  An improvement to generalized-minimum-distance decoding , 1991, IEEE Trans. Inf. Theory.

[9]  Alexander Vardy,et al.  Optimal sectionalization of a trellis , 1996, IEEE Trans. Inf. Theory.

[10]  J.L. Massey,et al.  Theory and practice of error control codes , 1986, Proceedings of the IEEE.

[11]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[12]  B. Vucetic,et al.  Maximum likelihood decoding of Reed Solomon codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[13]  Shigeichi Hirasawa,et al.  An efficient maximum-likelihood-decoding algorithm for linear block codes with algebraic decoder , 1994, IEEE Trans. Inf. Theory.

[14]  Branka Vucetic,et al.  Soft decision decoding of Reed-Solomon codes , 2002, IEEE Trans. Commun..

[15]  W. Fischer,et al.  Sphere Packings, Lattices and Groups , 1990 .

[16]  Alexander Vardy,et al.  Bit-level soft-decision decoding of Reed-Solomon codes , 1991, IEEE Trans. Commun..

[17]  M. Alard,et al.  Principles of Modulation and Channel Coding for Digital Broadcasting for Mobile Receivers , 1987 .

[18]  David Chase,et al.  Class of algorithms for decoding block codes with channel measurement information , 1972, IEEE Trans. Inf. Theory.

[19]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[20]  Yair Be'ery,et al.  Maximum likelihood soft decoding of binary block codes and decoders for the Golay codes , 1989, IEEE Trans. Inf. Theory.

[21]  Jack K. Wolf,et al.  Efficient maximum likelihood decoding of linear block codes using a trellis , 1978, IEEE Trans. Inf. Theory.

[22]  Jun-Ji Lee,et al.  Recent Results on the Use of Concatenated Reed-Solomon/Viterbi Channel Coding and Data Compression for Space Communications , 1984, IEEE Trans. Commun..

[23]  G. David Forney,et al.  Generalized minimum distance decoding , 1966, IEEE Trans. Inf. Theory.

[24]  Dana J. Taipale,et al.  An efficient soft-decision Reed-Solomon decoding algorithm , 1994, IEEE Trans. Inf. Theory.