Vector magnetometer based on synchronous manipulation of nitrogen-vacancy centers in all crystal directions

[1]  Edward H. Chen,et al.  High-sensitivity spin-based electrometry with an ensemble of nitrogen-vacancy centers in diamond , 2017, 1703.07517.

[2]  U. Andersen,et al.  Pump-Enhanced Continuous-Wave Magnetometry using Nitrogen-Vacancy Ensembles , 2017, 1707.00502.

[3]  J. Tetienne,et al.  The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry , 2014, Nature Communications.

[4]  Dirk Englund,et al.  Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide , 2014, Nature Physics.

[5]  M. Romalis,et al.  High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. , 2002, Physical review letters.

[6]  M. Lukin,et al.  Enhanced solid-state multispin metrology using dynamical decoupling , 2012, 1201.5686.

[7]  Neil B. Manson,et al.  Perfect alignment and preferential orientation of nitrogen-vacancy centers during chemical vapor deposition diamond growth on (111) surfaces , 2014, 1401.4106.

[8]  Hongbin Sun,et al.  Single-protein spin resonance spectroscopy under ambient conditions , 2015, Science.

[9]  Ronald L. Walsworth,et al.  Optical magnetic detection of single-neuron action potentials using quantum defects in diamond , 2016, Proceedings of the National Academy of Sciences.

[10]  Raymond G. Beausoleil,et al.  Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications , 2009 .

[11]  D. Budker,et al.  Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond , 2015, 1505.00636.

[12]  Jiancheng Fang,et al.  Inertial rotation measurement with atomic spins: From angular momentum conservation to quantum phase theory , 2016 .

[13]  Ultrasensitive diamond magnetometry using optimal dynamic decoupling , 2010, 1003.3699.

[14]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[15]  N. Alfasi,et al.  Enhanced concentrations of nitrogen-vacancy centers in diamond through TEM irradiation , 2017, 1702.05332.

[16]  Magneto-optical imaging of thin magnetic films using spins in diamond , 2015, Scientific reports.

[17]  R. Fagaly Superconducting quantum interference device instruments and applications , 2006 .

[18]  M. Markham,et al.  Extending spin coherence times of diamond qubits by high-temperature annealing , 2013, 1309.4316.

[19]  T. W. Kornack,et al.  A subfemtotesla multichannel atomic magnetometer , 2003, Nature.

[20]  Wen‐Di Li,et al.  High density nitrogen-vacancy sensing surface created via He+ ion implantation of 12C diamond , 2016, 1602.01534.

[21]  D. Rugar,et al.  Nanoscale Nuclear Magnetic Resonance with a Nitrogen-Vacancy Spin Sensor , 2013, Science.

[22]  W. Quan,et al.  Microwave Magnetic Field Coupling with Nitrogen-Vacancy Center Ensembles in Diamond with High Homogeneity , 2016 .

[23]  M. Lukin,et al.  Efficient photon detection from color centers in a diamond optical waveguide , 2012, 1201.0674.

[24]  R. Walsworth,et al.  Anti-reflection coating for nitrogen-vacancy optical measurements in diamond , 2012 .

[25]  D Budker,et al.  Solid-state electronic spin coherence time approaching one second , 2012, Nature Communications.

[26]  Room-temperature operation of a radiofrequency diamond magnetometer near the shot-noise limit , 2012, 1201.3152.

[27]  Paola Cappellaro,et al.  Stable three-axis nuclear-spin gyroscope in diamond , 2012, 1205.1494.

[28]  J. Tetienne,et al.  Nanoscale imaging and control of domain-wall hopping with a nitrogen-vacancy center microscope , 2014, Science.

[29]  D G Cory,et al.  Superconducting microstrip resonator for pulsed ESR of thin films. , 2013, Journal of magnetic resonance.

[30]  N. Zhao,et al.  Atomic-scale magnetometry of distant nuclear spin clusters via nitrogen-vacancy spin in diamond. , 2010, Nature nanotechnology.

[31]  T. Ida,et al.  Extended pseudo-Voigt function for approximating the Voigt profile , 2000 .

[32]  D. Awschalom,et al.  Vector magnetic field microscopy using nitrogen vacancy centers in diamond , 2009, 0912.1355.

[33]  Marko Loncar,et al.  Efficient, uniform, and large area microwave magnetic coupling to NV centers in diamond using double split-ring resonators. , 2014, Nano letters.

[34]  Yan Wang,et al.  Dependence of high density nitrogen-vacancy center ensemble coherence on electron irradiation doses and annealing time , 2017 .

[35]  Junichi Isoya,et al.  Subpicotesla Diamond Magnetometry , 2014, 1411.6553.

[36]  Alexander Huck,et al.  Optimised frequency modulation for continuous-wave optical magnetic resonance sensing using nitrogen-vacancy ensembles. , 2017, Optics express.

[37]  L. Hollenberg,et al.  Nanoscale sensing and imaging in biology using the nitrogen-vacancy center in diamond , 2013 .

[38]  J. Meijer,et al.  Nuclear Magnetic Resonance Spectroscopy on a (5-Nanometer)3 Sample Volume , 2013, Science.

[39]  L. Hollenberg,et al.  Electronic properties and metrology applications of the diamond NV- center under pressure. , 2013, Physical review letters.

[40]  P. Cappellaro,et al.  Coherence of nitrogen-vacancy electronic spin ensembles in diamond , 2010, 1006.4219.

[41]  Jiangfeng Du,et al.  High-resolution vector microwave magnetometry based on solid-state spins in diamond , 2015, Nature Communications.