Non-silica microstructured optical fibers

We review advances in the fabrication of a diverse range of non-silica glass microstructured optical fibers. We also show the benefits these fibers offer for applications including nonlinear optics, sensing and the mid-infrared. Article not available.

[1]  Kazuyuki Hirao,et al.  Third-order optical nonlinearities and their ultrafast response in Bi 2 O 3 –B 2 O 3 –SiO 2 glasses , 1999 .

[2]  P. Russell Photonic Crystal Fibers , 2003, Science.

[3]  David J. Richardson,et al.  Holey optical fibres: Fundamental properties and device applications , 2003 .

[4]  D.J. Richardson,et al.  Efficient modelling of holey fibers , 1999, OFC/IOOC . Technical Digest. Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication.

[5]  Kathleen Richardson,et al.  Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica. , 2003, Optics letters.

[6]  P. A. Andersen,et al.  A high-speed demultiplexer based on a nonlinear optical loop mirror with a photonic crystal fiber , 2003, IEEE Photonics Technology Letters.

[7]  F. Omenetto,et al.  Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. , 2002, Optics express.

[8]  E. M. Vogel,et al.  Tellurite glass: a new candidate for fiber devices , 1994 .

[9]  D J Richardson,et al.  2R-regenerative all-optical switch based on a highly nonlinear holey fiber. , 2001, Optics letters.

[10]  Leon Poladian,et al.  Fourier decomposition algorithm for leaky modes of fibres with arbitrary geometry. , 2002, Optics express.

[11]  N. Sugimoto,et al.  Fusion spliceable and highly efficient Bi/sub 2/O/sub 3/-based EDF for short-length and broadband application pumped at 1480 nm , 2001, OFC 2001. Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition (IEEE Cat. 01CH37171).

[12]  D. M. Atkin,et al.  All-silica single-mode optical fiber with photonic crystal cladding. , 1996, Optics letters.

[13]  J. Joannopoulos,et al.  Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission , 2002, Nature.

[14]  P. Roberts,et al.  Robust photonic band gaps for hollow core guidance in PCF made from high index glass. , 2003, Optics express.

[15]  E. M. Vogel,et al.  Nonlinear optical phenomena in glass , 1991 .

[16]  D J Richardson,et al.  Holey fibers with random cladding distributions. , 2000, Optics letters.

[17]  Jasbinder Sanghera,et al.  As-S and As-Se based photonic band gap fiber for IR laser transmission. , 2003, Optics express.

[18]  P. Russell,et al.  Endlessly single-mode photonic crystal fiber. , 1997, Optics letters.

[19]  J R Taylor,et al.  Generation of multiwatt, broadband continua in holey fibers. , 2002, Optics letters.

[20]  P. Roberts,et al.  Demonstration of ultra-flattened dispersion in photonic crystal fibers. , 2002, Optics express.

[21]  D J Richardson,et al.  Raman effects in a highly nonlinear holey fiber: amplification and modulation. , 2002, Optics letters.

[22]  R. McPhedran,et al.  Multipole method for microstructured optical fibers. II. Implementation and results , 2002 .

[23]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .

[24]  David J. Richardson,et al.  Extruded singlemode non-silica glass holey optical fibres , 2002 .

[25]  Simon Fleming,et al.  Microstructured polymer optical fibre. , 2001 .

[26]  S. V. Chernikov,et al.  Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 μm , 1996 .

[27]  S. Friberg,et al.  Nonlinear optical glasses for ultrafast optical switches , 1987 .

[28]  M. Koshiba,et al.  Hole-assisted lightguide fiber for large anomalous dispersion and low optical loss. , 2001, Optics express.

[29]  Marco Fiorentino,et al.  Optical parametric oscillator based on four-wave mixing in microstructure fiber. , 2002, Optics letters.

[30]  Setsuhisa Tanabe,et al.  Hydroxyl groups in erbium-doped germanotellurite glasses , 2001 .

[31]  P. Russell,et al.  Tellurite photonic crystal fiber. , 2003, Optics express.

[32]  P. Petropoulos,et al.  Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold , 2003, IEEE Photonics Technology Letters.

[33]  Periklis Petropoulos,et al.  Solid microstructured optical fiber. , 2003, Optics express.

[34]  Cyril C. Renaud,et al.  Jacketed air-clad cladding pumped ytterbium-doped fibre laser with wide tuning range , 2001 .

[35]  William J. Wadsworth,et al.  Soliton effects in photonic crystal fibres at 850 nm , 2000 .

[36]  Seiki Ohara,et al.  Novel Short-Length EDF for C+L Band Amplification , 2000 .

[37]  Ju Han Lee,et al.  A tunable WDM wavelength converter based on cross-phase modulation effects in normal dispersion holey fiber , 2003, IEEE Photonics Technology Letters.

[38]  Jonathan Knight,et al.  Large mode area photonic crystal fibre , 1998 .

[39]  K. Morinaga,et al.  Measurement of viscosity of multi-component glasses in the wide range for fiber drawing , 1998 .

[40]  N. Sugimoto,et al.  Fusion Spliceable and High Efficient Bi2O3-based EDF for Short-length and Broadband Application Pumped at 1480 nm. , 2001, OFC 2001.

[41]  Knight,et al.  Optical frequency synthesizer for precision spectroscopy , 2000, Physical review letters.

[42]  J. Fujimoto,et al.  Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. , 2001, Optics letters.

[43]  P. Petropoulos,et al.  A spliced and connectorized highly nonlinear and anomalously dispersive bismuth-oxide glass holey fiber , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[44]  P. Petropoulos,et al.  Highly nonlinear bismuth-oxide-based glass holey fiber , 2004, Optical Fiber Communication Conference, 2004. OFC 2004.

[45]  J. Arriaga,et al.  Anomalous dispersion in photonic crystal fiber , 2000, IEEE Photonics Technology Letters.

[46]  David J. Richardson,et al.  A tunable, femtosecond pulse source operating in the range 1.06-1.33 microns based on an Yb doped holey fiber amplifier , 2001, CLEO 2001.

[47]  K. Taira,et al.  Highly nonlinear bismuth oxide-based glass fibres for all-optical signal processing , 2002 .

[48]  William T. Rhodes,et al.  Tunable near-infrared femtosecond soliton generation in photonic crystal fibres , 2001 .

[49]  Periklis Petropoulos,et al.  Soliton-self-frequency-shift effects and pulse compression in an anomalously dispersive high nonlinearity lead silicate holey fiber , 2003, OFC 2003.

[50]  P. Jeppesen,et al.  Transmission over 5.6 km large effective area and low-loss (1.7 dB/km) photonic crystal fibre , 2003 .

[51]  Christophe Peucheret,et al.  40 Gbit/s transmission over photonic crystal fibre using mid-span spectral inversion in highly nonlinear photonic crystal fibre , 2003 .

[52]  Heike Ebendorff-Heidepriem,et al.  Highly nonlinear and anomalously dispersive lead silicate glass holey fibers. , 2003, Optics express.