Electrochemical method for direct deposition of nanometric bismuth and its electrochemical properties vs Li

We report that nanometric bismuth can directly be electrodeposited at room temperature without the use of a nanoporous template. The morphology, microstructure, and purity of the as-prepared electrodeposits were characterized by scanning electron microscopy, transmission electron microscopy, and infrared spectroscopy. Typically, well-crystallized nanometer-sized particles of Bi ranging from 10 to 20 nm are obtained. The key to success of such a process lies in the electrochemical coreduction of pyrocatechol violet during the bismuth deposition, which disturbs the electrocrystallization process. As a first possible application, we show that Bi/Cu nanoarchitectured electrodes exhibit interesting rate capabilities when used as electrode material vs Li.

[1]  Bruno Scrosati,et al.  High‐Rate, Long‐Life Ni–Sn Nanostructured Electrodes for Lithium‐Ion Batteries , 2007 .

[2]  J. Tarascon,et al.  Growth and Electrochemical Characterization versus Lithium of Fe3O4 Electrodes Made by Electrodeposition , 2006 .

[3]  J. Tarascon,et al.  High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications , 2006, Nature materials.

[4]  T. Osaka,et al.  Three-dimensional microfabrication process using Bi electrodeposition for a highly sensitive X-ray imaging sensor , 2005 .

[5]  Heon-Cheol Shin,et al.  Copper Foam Structures with Highly Porous Nanostructured Walls , 2004 .

[6]  L. Balan,et al.  A new synthesis of ultrafine nanometre-sized bismuth particles , 2004 .

[7]  Chunhua Yan,et al.  Synthesis of bismuth with various morphologies by electrodeposition , 2003 .

[8]  J. Dahn,et al.  Anomalous, high-voltage irreversible capacity in tin electrodes for lithium batteries , 2003 .

[9]  J. Dahn,et al.  The Electrochemical Reaction of Lithium with Tin Studied By In Situ AFM , 2003 .

[10]  Ronald Gronsky,et al.  The electrodeposition of high-density, ordered arrays of Bi1-xSbx nanowires. , 2003, Journal of the American Chemical Society.

[11]  T. Brousse,et al.  Advanced oxide and metal powders for negative electrodes in lithium-ion batteries , 2002 .

[12]  C. M. Thrush,et al.  Thermoelectric power of bismuth nanocomposites. , 2002, Physical review letters.

[13]  I. Uchida,et al.  Lithium alloy formation at bismuth thin layer electrode and its kinetics in propylene carbonate electrolyte , 2002 .

[14]  I. Vurgaftman,et al.  Large magnetoresistance in postannealed Bi thin films , 2001 .

[15]  T. Brousse,et al.  Influence of particle size and matrix in “metal” anodes for Li-ion cells , 2001 .

[16]  Weilie Zhou,et al.  Microemulsion-processed bismuth nanoparticles , 2001 .

[17]  Yu-Ming Lin,et al.  Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires , 2000 .

[18]  R. Stroud,et al.  Synthesis of Nanocrystalline Bismuth in Reverse Micelles , 2000 .

[19]  Charles R. Martin,et al.  Rate Capabilities of Nanostructured LiMn2 O 4 Electrodes in Aqueous Electrolyte , 2000 .

[20]  Chien,et al.  Large magnetoresistance of electrodeposited single-crystal bismuth thin films , 1999, Science.

[21]  C. Chien,et al.  LARGE MAGNETORESISTANCE AND FINITE-SIZE EFFECTS IN ELECTRODEPOSITED SINGLE-CRYSTAL BI THIN FILMS , 1999 .

[22]  J. P. Ziegler Status of reversible electrodeposition electrochromic devices , 1999 .

[23]  Peter C. Searson,et al.  Structural and magneto-transport properties of electrodeposited bismuth nanowires , 1998 .

[24]  M. Dresselhaus,et al.  Magnetotransport investigations of ultrafine single-crystalline bismuth nanowire arrays , 1998 .

[25]  K. Jirage,et al.  Chemical‐Vapor Deposition‐Based Template Synthesis of Microtubular TiS2 Battery Electrodes , 1997 .

[26]  S. D. Torresi,et al.  Optical characterization of bismuth reversible electrodeposition , 1996 .

[27]  C. R. Martin,et al.  Membrane-Based Synthesis of Nanomaterials , 1996 .

[28]  Charles R. Martin,et al.  Nanomaterials: A Membrane-Based Synthetic Approach , 1994, Science.

[29]  Marc Doyle,et al.  A quick method of measuring the capacity versus discharge rate for a dual lithium-ion insertion cell undergoing cycling , 1994 .

[30]  M. Dresselhaus,et al.  Thermoelectric figure of merit of a one-dimensional conductor. , 1993, Physical review. B, Condensed matter.

[31]  R. Huggins,et al.  Behavior of Some Binary Lithium Alloys as Negative Electrodes in Organic Solvent‐Based Electrolytes , 1986 .

[32]  S. Kotrlý,et al.  Handbook of chemical equilibria in analytical chemistry , 1985 .

[33]  L. Csányi,et al.  A POLAROGRAPHIC STUDY OF PYROCATECHOL VIOLET , 1981 .

[34]  R. Huggins,et al.  Electrochemical investigation of the chemical diffusion, partial ionic conductivities, and other kinetic parameters in Li3Sb and Li3Bi , 1977 .

[35]  J. Heremans,et al.  Transport properties of bismuth in quantising magnetic fields , 1976 .