Computational homogenization of non-stationary transport processes in masonry structures

A fully coupled transient heat and moisture transport in a masonry structure is examined in this paper. Supported by several successful applications in civil engineering the nonlinear diffusion model proposed by Kunzel (1997) [16] is adopted in the present study. A strong material heterogeneity together with a significant dependence of the model parameters on initial conditions as well as the gradients of heat and moisture fields vindicates the use of a hierarchical modeling strategy to solve the problem of this kind. Attention is limited to the classical first order homogenization in a spatial domain developed here in the framework of a two step (meso-macro) multi-scale computational scheme (FE^2 problem). Several illustrative examples are presented to investigate the influence of transient flow at the level of constituents (meso-scale) on the macroscopic response including the effect of macro-scale boundary conditions. A two-dimensional section of Charles Bridge subjected to actual climatic conditions is analyzed next to confirm the suitability of algorithmic format of FE^2 scheme for the parallel computing.

[1]  Walter Brötz,et al.  Die wissenschaftlichen Grundlagen der Trocknungstechnik , 1965 .

[2]  Fredrik Larsson,et al.  Variationally consistent computational homogenization of transient heat flow , 2009 .

[3]  Gabriele Milani,et al.  3D homogenized limit analysis of masonry buildings under horizontal loads , 2007 .

[4]  G. Milani,et al.  Analysis of masonry structures: review of and recent trends in homogenization techniques1 , 2007 .

[5]  Paulo B. Lourenço,et al.  Abbreviated Title : Homogenised limit analysis of masonry , failure surfaces , 2007 .

[6]  Michal Šejnoha,et al.  Pragmatic multi-scale and multi-physics analysis of Charles Bridge in Prague , 2008 .

[7]  Richard Přikryl,et al.  Contribution of clayey–calcareous silicite to the mechanical properties of structural mortared rubble masonry of the medieval Charles Bridge in Prague (Czech Republic) , 2010 .

[8]  V. Gnielinski,et al.  Trocknungstechnik, Bd. 1 : Die wissenschaftlichen Grundlagen der Trocknungstechnik. Von O. Krischer und W. Kast. Springer‐Verlag, Berlin – Heidelberg – New York 1978. 3. neubearb. Aufl., XIX, 489 S., 367 Abb., 3 Tab., Ln., DM 196,– , 1979 .

[9]  Michal Šejnoha,et al.  Homogenization of coupled heat and moisture transport in masonry structures including interfaces , 2013, Appl. Math. Comput..

[10]  Jan Zeman,et al.  Macroscopic constitutive law for Mastic Asphalt Mixtures from multiscale modeling , 2009, 0907.1921.

[11]  Pavla Rovnaníková,et al.  Transport processes in concrete , 2002 .

[12]  J. Zeman,et al.  Stochastic Modeling of Chaotic Masonry via Mesostructural Characterization , 2008, 0811.0972.

[13]  M. Geers,et al.  Computational homogenization for heat conduction in heterogeneous solids , 2008 .

[14]  Benoît Mercatoris,et al.  Assessment of periodic homogenisation-based multi-scale computational schemes for quasi-brittle structural failure , 2009 .

[15]  A. Anthoine Derivation of the in-plane elastic characteristics of masonry through homogenization theory , 1995 .

[16]  Gabriele Milani,et al.  Homogenised limit analysis of masonry walls, Part II: Structural examples , 2006 .

[17]  Hartwig M. Künzel,et al.  Calculation of heat and moisture transfer in exposed building components , 1996 .

[18]  Paulo B. Lourenço,et al.  Homogenization approach for the limit analysis of out-of-plane loaded masonry walls , 2006 .

[19]  Tomáš Krejčí,et al.  Analysis of coupled heat and moisture transfer in masonry structures , 2008, 0804.3554.

[20]  Michal Šejnoha,et al.  From random microstructures to representative volume elements , 2007 .

[21]  R. Cerny,et al.  Hygric and thermal properties of materials of historical masonry , 2008 .

[22]  Fraunhofer-Institut für Bauphysik,et al.  Simultaneous heat and moisture transport in building components: One- and two-dimensional calculation using simple parameters , 1995 .