Strong convergence rates of probabilistic integrators for ordinary differential equations

Probabilistic integration of a continuous dynamical system is a way of systematically introducing model error, at scales no larger than errors inroduced by standard numerical discretisation, in order to enable thorough exploration of possible responses of the system to inputs. It is thus a potentially useful approach in a number of applications such as forward uncertainty quantification, inverse problems, and data assimilation. We extend the convergence analysis of probabilistic integrators for deterministic ordinary differential equations, as proposed by Conrad et al. (Stat. Comput., 2016), to establish mean-square convergence in the uniform norm on discrete- or continuous-time solutions under relaxed regularity assumptions on the driving vector fields and their induced flows. Specifically, we show that randomised high-order integrators for globally Lipschitz flows and randomised Euler integrators for dissipative vector fields with polynomially-bounded local Lipschitz constants all have the same mean-square convergence rate as their deterministic counterparts, provided that the variance of the integration noise is not of higher order than the corresponding deterministic integrator.

[1]  Goran Peskir On the exponential Orlicz norms of stopped Brownian motion , 1996 .

[2]  Henryk Wozniakowski,et al.  Information, Uncertainty, Complexity , 1982 .

[3]  T. Sullivan Introduction to Uncertainty Quantification , 2015 .

[4]  P. Diaconis Bayesian Numerical Analysis , 1988 .

[5]  E. Novak Deterministic and Stochastic Error Bounds in Numerical Analysis , 1988 .

[6]  David Duvenaud,et al.  Probabilistic ODE Solvers with Runge-Kutta Means , 2014, NIPS.

[7]  Neil D. Lawrence,et al.  GLASSES: Relieving The Myopia Of Bayesian Optimisation , 2015, AISTATS.

[8]  Xuerong Mao,et al.  Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients , 2012, J. Comput. Appl. Math..

[9]  Michael A. Osborne,et al.  Probabilistic numerics and uncertainty in computations , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  Mark A. Girolami,et al.  Bayesian Probabilistic Numerical Methods , 2017, SIAM Rev..

[11]  Houman Owhadi,et al.  Bayesian Numerical Homogenization , 2014, Multiscale Model. Simul..

[12]  J. Skilling Bayesian Solution of Ordinary Differential Equations , 1992 .

[13]  Klaus Ritter,et al.  Average-case analysis of numerical problems , 2000, Lecture notes in mathematics.

[14]  Andrew M. Stuart,et al.  Strong Convergence of Euler-Type Methods for Nonlinear Stochastic Differential Equations , 2002, SIAM J. Numer. Anal..

[15]  D. Nychka Data Assimilation” , 2006 .

[16]  Marcos A. Capistrán,et al.  Bayesian Analysis of ODEs: Solver Optimal Accuracy and Bayes Factors , 2013, SIAM/ASA J. Uncertain. Quantification.

[17]  Houman Owhadi,et al.  Multigrid with Rough Coefficients and Multiresolution Operator Decomposition from Hierarchical Information Games , 2015, SIAM Rev..

[18]  Chika Moore,et al.  STRONG CONVERGENCE AND STABILITY OF FIXED POINT ITERATION PROCESSES , 2005 .

[19]  Aretha L. Teckentrup,et al.  Random forward models and log-likelihoods in Bayesian inverse problems , 2017, SIAM/ASA J. Uncertain. Quantification.

[20]  Philipp Hennig,et al.  Probabilistic Interpretation of Linear Solvers , 2014, SIAM J. Optim..

[21]  Andrew M. Stuart,et al.  Statistical analysis of differential equations: introducing probability measures on numerical solutions , 2016, Statistics and Computing.

[22]  Marcos A. Capistr'an,et al.  Posterior distribution existence and error control in Banach spaces in the Bayesian approach to UQ in inverse problems , 2017, 1712.03299.

[23]  A. V. D. Vaart,et al.  BAYESIAN INVERSE PROBLEMS WITH GAUSSIAN PRIORS , 2011, 1103.2692.

[24]  Michael A. Osborne,et al.  Frank-Wolfe Bayesian Quadrature: Probabilistic Integration with Theoretical Guarantees , 2015, NIPS.

[25]  Joseph F. Traub,et al.  Theory of optimal algorithms , 1973 .

[26]  Yue Wu,et al.  Error Analysis of Randomized Runge–Kutta Methods for Differential Equations with Time-Irregular Coefficients , 2017, Comput. Methods Appl. Math..

[27]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[28]  M. Girolami,et al.  Bayesian Solution Uncertainty Quantification for Differential Equations , 2013 .

[29]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[30]  Andrew M. Stuart,et al.  Runge-Kutta methods for dissipative and gradient dynamical systems , 1994 .

[31]  Jon Cockayne,et al.  On the Bayesian Solution of Differential Equations , 2018 .

[32]  Colin J. Cotter,et al.  Probabilistic Forecasting and Bayesian Data Assimilation , 2015 .

[33]  G. Stengle Numerical methods for systems with measurable coefficients , 1990 .

[34]  Michael B. Giles,et al.  Multilevel Monte Carlo methods , 2013, Acta Numerica.

[35]  Arnulf Jentzen,et al.  A random Euler scheme for Carathéodory differential equations , 2009 .

[36]  Ben Calderhead,et al.  Implicit Probabilistic Integrators for ODEs , 2018, NeurIPS.

[37]  Mark A. Girolami,et al.  Probabilistic Numerical Methods for PDE-constrained Bayesian Inverse Problems , 2017, ArXiv.