Patterning of Hard Mask on (111)-Oriented BTO/LSMO Heterostructures on STO Substrates

Functional oxides exhibit properties that make them interesting for future electronic devices. Thin films of functional oxides can be routinely produced, but there lacks a standard technique for establishing nanoscale freestanding structures on insulating substrates. The nanostructures must be well defined and maintain bulk properties. In this work a recipe for establishing a two layer hard mask suitable for ion beam etching (IBE) has been developed. A chromium hard mask is patterned and deposited using electron beam lithography (EBL) and lift off. The pattern is transferred to an underlying carbon layer by oxygen reactive ion etching (RIE). Hard masks with hallbar patterns have been structured on 5 × 5 mm samples with thin films of La0.7Sr0.3MnO3 (LSMO) and BaTiO3 (BTO) on (111)-oriented SrTiO3 (STO) substrates. The hallbars have widths from 11μm and down to 130 nm, which are connected to 200× 200 μm contacts pads. A bilayer mask of PMMA and MMA with a total thickness of 240 nm is found to work successfully for lifting off 20 nm of chromium. Samples are prone to charging during electron beam lithography. Fine features are written using 100 pA beam current, while large features are defined at 10 nA. The hard mask patterned samples are prepared for IBE, which will transfer the hard mask pattern into the oxide thin film and substrate, realizing freestanding oxide structures. Followed by deposition of contacts and wirebonding, the devices can be used to investigate electrical transport properties.

[1]  C. Eom,et al.  Surface stability of epitaxial La0.7Sr0.3MnO3 thin films on (111)-oriented SrTiO3 , 2013 .

[2]  T. Claeson,et al.  Nano-patterning of the electron gas at the LaAlO3/SrTiO3 interface using low-energy ion beam irradiation , 2013 .

[3]  Aristóteles,et al.  De anima. A. , 1960 .

[4]  J. Mannhart,et al.  Oxide Interfaces—An Opportunity for Electronics , 2010, Science.

[5]  X. Lu,et al.  Hydrothermal synthesis of single-crystalline La0.5Ca0.5MnO3 nanowires at low temperature , 2004 .

[6]  Binasch,et al.  Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. , 1989, Physical review. B, Condensed matter.

[7]  A. Boyde,et al.  The Principles and Practice of Electron Microscopy. , 1986 .

[8]  Manijeh Razeghi,et al.  Fundamentals of Solid State Engineering , 2002 .

[9]  Mark S. Johnson,et al.  Spin electronics , 2003, SPIE OPTO.

[10]  B. Ertuǧ,et al.  The Overview of The Electrical Properties of Barium Titanate , 2013 .

[11]  J. C. Sloncxewski Current-driven excitation of magnetic multilayers , 2003 .

[12]  P. Nordblad,et al.  Point contact investigations of film and interface magnetoresistance of La0.7Sr0.3MnO3 heterostructures on Nb:SrTiO3 , 2014, 1408.5632.

[13]  A. Savici,et al.  New magnetic phase diagram of (Sr,Ca)2RuO4. , 2012, Nature materials.

[14]  H. Ahmed,et al.  Comparison of MIBK/IPA and water/IPA as PMMA developers for electron beam nanolithography , 2002 .

[15]  E. Hall On the "Rotational Coefficient" in Nickel and Cobalt , 1880 .

[16]  Berger Emission of spin waves by a magnetic multilayer traversed by a current. , 1996, Physical review. B, Condensed matter.

[17]  J. Heber Materials science: Enter the oxides , 2009, Nature.

[18]  J. Smit,et al.  Spontaneous Hall Effect in Ferromagnetics , 1953 .

[19]  Michael Hatzakis,et al.  High-resolution positive resists for electron-beam exposure , 1968 .

[20]  Michael Hatzakis,et al.  Single-Step Optical Lift-Off Process , 1980, IBM J. Res. Dev..

[21]  C. Eom,et al.  Strain modification of epitaxial perovskite oxide thin films using structural transitions of ferroelectric BaTiO3 substrate , 2000 .

[22]  N. Reyren,et al.  Superconducting Interfaces Between Insulating Oxides , 2007, Science.

[23]  J. Sinova,et al.  Anomalous hall effect , 2009, 0904.4154.

[24]  Igor Žutić,et al.  New moves of the spintronics tango. , 2012, Nature materials.

[25]  A. Fert,et al.  Tunnel junctions with multiferroic barriers. , 2007, Nature materials.

[26]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[27]  J. Gregg Spintronics: a growing science. , 2007, Nature materials.

[28]  G. A. Smolenskii,et al.  REVIEWS OF TOPICAL PROBLEMS: Ferroelectromagnets , 1982 .

[29]  J. Smit The spontaneous hall effect in ferromagnetics II , 1955 .

[30]  H. Namatsu,et al.  5-nm-Order Electron-Beam Lithography for Nanodevice Fabrication , 2003, Digest of Papers Microprocesses and Nanotechnology 2003. 2003 International Microprocesses and Nanotechnology Conference.

[31]  Radivoje Popovic,et al.  Hall effect devices , 1991 .

[32]  H. Fu,et al.  Various evidences for the unusual polarization behaviors in epitaxially strained (111) BaTiO3 , 2014 .

[33]  E. Dagotto,et al.  Reemergent metal-insulator transitions in manganites exposed with spatial confinement. , 2008, Physical review letters.

[34]  Hidekazu Tanaka,et al.  Digitalized magnetoresistance observed in (La,Pr,Ca)MnO3 nanochannel structures , 2006 .

[35]  S. Cheong,et al.  Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites , 1999, Nature.

[36]  T. Tiefel,et al.  Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films , 1994, Science.

[37]  Elbio Dagotto,et al.  Complexity in Strongly Correlated Electronic Systems , 2005, Science.

[38]  C. Kittel Introduction to solid state physics , 1954 .

[39]  K. Müller,et al.  Possible highTc superconductivity in the Ba−La−Cu−O system , 1986 .

[40]  A. Barthelemy,et al.  Oxide Spintronics , 2007, IEEE Transactions on Electron Devices.

[41]  M. Salamon,et al.  The Physics of Manganites: Structure and Transport. , 2002 .

[42]  Takashi Hotta,et al.  Colossal Magnetoresistant Materials: The Key Role of Phase Separation , 2000, cond-mat/0012117.

[43]  Y. Tomioka,et al.  Colossal magnetoresistive manganites , 1999 .

[44]  Arthur P. Ramirez,et al.  Oxide Electronics Emerge , 2007, Science.

[45]  E. Pugh,et al.  Hall e.m.f. and Intensity of Magnetization , 1932 .

[46]  H. Da,et al.  Study of anomalous I-V characteristics in spatially confined manganite structures , 2007 .

[47]  Y. Tokura,et al.  A brief introduction to strongly correlated electronic materials , 2012 .

[48]  Kenji Murata,et al.  Monte Carlo Calculations on Electron Scattering in a Solid Target , 1971 .

[49]  A. Neureuther,et al.  Energy deposition and transfer in electron-beam lithography , 2001 .

[50]  Kido,et al.  Insulator-metal transition and giant magnetoresistance in La1-xSrxMnO3. , 1995, Physical review. B, Condensed matter.

[51]  S. Chou,et al.  Sub-10 nm imprint lithography and applications , 1997 .

[52]  S. Bader Colloquium: Opportunities in Nanomagnetism , 2006 .

[53]  J. Philip,et al.  Large low field magnetoresistance in La0.67Sr0.33MnO3 nanowire devices , 2011 .

[54]  Greg Szulczewski,et al.  A spin of their own. , 2009, Nature materials.

[55]  T. Ward,et al.  Giant discrete steps in metal-insulator transition in perovskite manganite wires. , 2006, Physical review letters.

[56]  R. Greene,et al.  Direct Observation of Percolation in a Manganite Thin Film , 2002, Science.

[57]  H. Takagi,et al.  Dielectric and magnetic anomalies and spin frustration in hexagonal R MnO 3 ( R = Y , Yb, and Lu) , 2001 .

[58]  E. Dagotto,et al.  Time-resolved electronic phase transitions in manganites. , 2009, Physical review letters.

[59]  M. Fiebig Revival of the magnetoelectric effect , 2005 .

[60]  John A. Rouse,et al.  Solution of electron optics problems with space charge in 2D and 3D , 1995, Optics & Photonics.

[61]  N. Mathur,et al.  Multiferroic and magnetoelectric materials , 2006, Nature.

[62]  Etienne,et al.  Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. , 1988, Physical review letters.

[63]  N. Mathur,et al.  The Current Spin on Manganites , 2008 .

[64]  Mihir Parikh Self‐consistent proximity effect correction technique for resist exposure (SPECTRE) , 1978 .

[65]  Robert Karplus,et al.  Hall Effect in Ferromagnetics , 1954 .

[66]  Yu-heng Zhang,et al.  Hydrothermal synthesis of La0.5Ba0.5MnO3 nanowires , 2002 .

[67]  M. Quirk,et al.  Semiconductor manufacturing technology , 2000 .

[68]  Akira Ohtomo,et al.  A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface , 2004, Nature.

[69]  L. Berger,et al.  Side-Jump Mechanism for the Hall Effect of Ferromagnets , 1970 .

[70]  Littlewood,et al.  Double exchange alone does not explain the resistivity of La1-xSrxMnO3. , 1995, Physical review letters.

[71]  D. Schroder Semiconductor Material and Device Characterization , 1990 .

[72]  John B. Goodenough,et al.  Theory of the role of covalence in the perovskite-type manganites [La,M(II)]MnO3 , 1955 .

[73]  S. Cheong,et al.  Multiferroics: a magnetic twist for ferroelectricity. , 2007, Nature materials.

[74]  J. H. van Santen,et al.  Ferromagnetic compounds of manganese with perovskite structure , 1950 .

[75]  Xinhua Zhu,et al.  Research progress on electronic phase separation in low-dimensional perovskite manganite nanostructures , 2014, Nanoscale Research Letters.

[76]  A. Guimarães Principles of Nanomagnetism , 2010 .

[77]  R. Laibowitz,et al.  One-dimensional superconductors , 1972 .

[78]  Joachim Stöhr,et al.  Magnetism From Fundamentals to Nanoscale Dynamics , 2006 .

[79]  A. Anane,et al.  Nearly total spin polarization in La2/3Sr1/3MnO3 from tunneling experiments , 2003 .

[80]  H. Kuwahara,et al.  Current switching of resistive states in magnetoresistive manganites , 1997, Nature.

[81]  E. Hall On a new Action of the Magnet on Electric Currents , 1879 .

[82]  W. Arden,et al.  More Than Moore White Paper , 2021, 2021 IEEE International Roadmap for Devices and Systems Outbriefs.

[83]  R. Ramesh,et al.  Direct evidence for a half-metallic ferromagnet , 1998, Nature.

[84]  K. Shankar,et al.  Fabrication of ordered array of nanowires of La0.67Ca0.33MnO3 (x=0.33) in alumina templates with enhanced ferromagnetic transition temperature , 2004 .

[85]  T. Dhakal,et al.  Intrinsic tunneling in phase separated manganites. , 2007, Physical review letters.

[86]  Mihir Parikh,et al.  Energy deposition functions in electron resist films on substrates , 1979 .

[87]  Cheong,et al.  Low temperature magnetoresistance and the magnetic phase diagram of La1-xCaxMnO3. , 1995, Physical review letters.