New representations of pi and Dirac delta using the nonextensive-statistical-mechanics q-exponential function

We present a generalization of the representation in plane waves of Dirac delta, $\delta(x)=(1/2\pi)\int_{-\infty}^\infty e^{-ikx}\,dk$, namely $\delta(x)=(2-q)/(2\pi)\int_{-\infty}^\infty e_q^{-ikx}\,dk$, using the nonextensive-statistical-mechanics $q$-exponential function, $e_q^{ix}\equiv[1+(1-q)ix]^{1/(1-q)}$ with $e_1^{ix}\equiv e^{ix}$, being $x$ any real number, for real values of $q$ within the interval $[1,2[$. Concomitantly with the development of these new representations of Dirac delta, we also present two new families of representations of the transcendental number $\pi$. Incidentally, we remark that the $q$-plane wave form which emerges, namely $e_q^{ikx}$, is normalizable for $1

[1]  L. Burlaga,et al.  COMPRESSIBLE “TURBULENCE” OBSERVED IN THE HELIOSHEATH BY VOYAGER 2 , 2009 .

[2]  L. Burlaga,et al.  Triangle for the entropic index q of non-extensive statistical mechanics observed by Voyager 1 in the distant heliosphere , 2005 .

[3]  Ugur Tirnakli,et al.  Analysis of self-organized criticality in Ehrenfest's dog-flea model. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Constantino Tsallis,et al.  On a q-Central Limit Theorem Consistent with Nonextensive Statistical Mechanics , 2008 .

[5]  Eberhard Bodenschatz,et al.  Defect turbulence and generalized statistical mechanics , 2004 .

[6]  Ernesto P. Borges On a q -generalization of circular and hyperbolic functions , 1998 .

[7]  Constantino Tsallis,et al.  Generalization of symmetric alpha-stable Lévy distributions for q>1. , 2009, Journal of mathematical physics.

[8]  C. Tsallis,et al.  Nonextensive Entropy: Interdisciplinary Applications , 2004 .

[9]  Mizan Rahman,et al.  Basic Hypergeometric Series , 1990 .

[10]  R. Cywinski,et al.  Generalized spin-glass relaxation. , 2009, Physical review letters.

[11]  P. Douglas,et al.  Tunable Tsallis distributions in dissipative optical lattices. , 2006, Physical review letters.

[12]  Bin Liu,et al.  Superdiffusion and non-Gaussian statistics in a driven-dissipative 2D dusty plasma. , 2008, Physical review letters.

[13]  L. Borland Option pricing formulas based on a non-Gaussian stock price model. , 2002, Physical review letters.

[14]  Constantino Tsallis,et al.  Special issue overview Nonextensive statistical mechanics: new trends, new perspectives , 2005 .

[15]  C. Tsallis Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World , 2009 .

[16]  Y. Sawada,et al.  Anomalous diffusion and non-Gaussian velocity distribution of Hydra cells in cellular aggregates , 2001 .

[17]  J. C. Carvalho,et al.  Power law statistics and stellar rotational velocities in the Pleiades , 2008, 0903.0836.

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  R. Arévalo,et al.  Anomalous diffusion in silo drainage , 2007, The European physical journal. E, Soft matter.

[20]  R. DeVoe,et al.  Power-law distributions for a trapped ion interacting with a classical buffer gas. , 2009, Physical review letters.

[21]  Ugur Tirnakli,et al.  Self-organization in dissipative optical lattices. , 2008, Chaos.

[22]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[23]  V Latora,et al.  Analysis of self-organized criticality in the Olami-Feder-Christensen model and in real earthquakes. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  G. Andrews The Theory of Partitions: Frontmatter , 1976 .

[25]  S. D. Queiros,et al.  On non-Gaussianity and dependence in financial time series: a nonextensive approach , 2005 .