Advances in drug delivery to the posterior segment

Purpose of review Emerging developments and research for drug delivery to the posterior segment offer a promising future for the treatment of vitreoretinal disease. As new technologies enter the market, clinicians should be aware of new indications and ongoing clinical trials. Recent findings This review summarizes the advantages and shortcomings of the most commonly used drug delivery methods, including vitreous dynamics, physician sustainability and patient preferences. Currently available, intravitreal, corticosteroid-release devices offer surgical and in-office management of retinal vascular disease and posterior uveitis. The suprachoroidal space offers a new anatomic location for the delivery of lower dose medications directly to the target tissue. Implantable drug reservoirs would potentially allow for less frequent intravitreal injections reducing treatment burdens and associated risks. Newer innovations in encapsulated cell technology offer promising results in early clinical trials. Summary Although pars plana intravitreal injection remains the mainstay of therapy for many vitreoretinal diseases, targeted delivery and implantable eluting devices are rapidly demonstrating safety and efficacy. These therapeutic modalities offer promising options for the vitreoretinal therapeutic landscape.

[1]  A. Pandit,et al.  Encapsulated cells for long-term secretion of soluble VEGF receptor 1: Material optimization and simulation of ocular drug response. , 2015, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[2]  B. Kirchhof,et al.  INFLUENCE OF OCULAR VOLUME AND LENS STATUS ON PHARMACOKINETICS AND DURATION OF ACTION OF INTRAVITREAL VASCULAR ENDOTHELIAL GROWTH FACTOR INHIBITORS , 2015, Retina.

[3]  P. A. Pearson,et al.  Use of the Fluocinolone Acetonide Intravitreal Implant for the Treatment of Noninfectious Posterior Uveitis: 3-Year Results of a Randomized Clinical Trial in a Predominantly Asian Population , 2014, Ophthalmology and Therapy.

[4]  S. Whitcup,et al.  Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. , 2014, Ophthalmology.

[5]  Glenn J Jaffe,et al.  Randomized trial of ciliary neurotrophic factor delivered by encapsulated cell intraocular implants for retinitis pigmentosa. , 2013, American journal of ophthalmology.

[6]  Y. Buys,et al.  Intraocular pressure monitoring post intravitreal steroids: a systematic review. , 2013, Survey of ophthalmology.

[7]  J. Haller Current anti-vascular endothelial growth factor dosing regimens: benefits and burden. , 2013, Ophthalmology.

[8]  Samirkumar R Patel,et al.  Treatment of acute posterior uveitis in a porcine model by injection of triamcinolone acetonide into the suprachoroidal space using microneedles. , 2013, Investigative ophthalmology & visual science.

[9]  P. Campochiaro,et al.  Aqueous levels of fluocinolone acetonide after administration of fluocinolone acetonide inserts or fluocinolone acetonide implants. , 2013, Ophthalmology.

[10]  D. Weakley,et al.  Dexamethasone intravitreal implant (Ozurdex) for the treatment of pediatric uveitis. , 2013, Journal of AAPOS : the official publication of the American Association for Pediatric Ophthalmology and Strabismus.

[11]  P. Campochiaro,et al.  Ranibizumab for edema of the macula in diabetes study: 3-year outcomes and the need for prolonged frequent treatment. , 2013, JAMA ophthalmology.

[12]  A. Ho,et al.  Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. , 2012, Ophthalmology.

[13]  P. Campochiaro,et al.  Sustained delivery fluocinolone acetonide vitreous inserts provide benefit for at least 3 years in patients with diabetic macular edema. , 2012, Ophthalmology.

[14]  M. Prausnitz,et al.  Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye. , 2012, Investigative ophthalmology & visual science.

[15]  M. Blumenkranz,et al.  Dexamethasone intravitreal implant in patients with macular edema related to branch or central retinal vein occlusion twelve-month study results. , 2011, Ophthalmology.

[16]  H. Loi,et al.  Myositis Ossificans , 2011, The western journal of emergency medicine.

[17]  T. Louis,et al.  Randomized comparison of systemic anti-inflammatory therapy versus fluocinolone acetonide implant for intermediate, posterior, and panuveitis: the multicenter uveitis steroid treatment trial. , 2011, Ophthalmology.

[18]  P. Campochiaro,et al.  Sustained benefits from ranibizumab for macular edema following central retinal vein occlusion: twelve-month outcomes of a phase III study. , 2011, Ophthalmology.

[19]  J. D. Cameron,et al.  Pharmacokinetics of pars plana intravitreal injections versus microcannula suprachoroidal injections of bevacizumab in a porcine model. , 2011, Investigative ophthalmology & visual science.

[20]  Glenn J Jaffe,et al.  Ranibizumab and bevacizumab for neovascular age-related macular degeneration. , 2011, The New England journal of medicine.

[21]  George A. Williams,et al.  Ciliary neurotrophic factor delivered by encapsulated cell intraocular implants for treatment of geographic atrophy in age-related macular degeneration , 2011, Proceedings of the National Academy of Sciences.

[22]  S. Gangaputra,et al.  Morphological Assessment of Fundus Color Images for the Multicenter Uveitis Steroid Treatment (MUST) Trial , 2010 .

[23]  C. Bell,et al.  Rapid expansion of intravitreal drug injection procedures, 2000 to 2008: a population-based analysis. , 2010, Archives of ophthalmology.

[24]  Mark S Humayun,et al.  Mini Drug Pump for Ophthalmic Use , 2009, Current eye research.

[25]  Uday B. Kompella,et al.  Prediction of Vitreal Half-Life Based on Drug Physicochemical Properties: Quantitative Structure–Pharmacokinetic Relationships (QSPKR) , 2009, Pharmaceutical Research.

[26]  Po-Ying Li,et al.  A passive MEMS drug delivery pump for treatment of ocular diseases , 2009, Biomedical microdevices.

[27]  P. A. Pearson,et al.  Treatment of posterior uveitis with a fluocinolone acetonide implant: three-year clinical trial results. , 2008, Archives of ophthalmology.

[28]  N. Wang,et al.  Transport Barriers in Transscleral Drug Delivery for Retinal Diseases , 2007, Ophthalmic Research.

[29]  J. D. Cameron,et al.  Cannulation of the suprachoroidal space: a novel drug delivery methodology to the posterior segment. , 2006, American journal of ophthalmology.

[30]  P. A. Pearson,et al.  Fluocinolone acetonide implant (Retisert) for noninfectious posterior uveitis: thirty-four-week results of a multicenter randomized clinical study. , 2006, Ophthalmology.

[31]  Perry Hd,et al.  Intravitreal injections by a Dermojet syringe. , 1977 .

[32]  A. Feigenbaum,et al.  Intravitreal injection of penicillin in a case of incipient abscess of the vitreous following extracapsular cataract extraction; perfect cure. , 1945, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.

[33]  Dr. Joh Ohm Über die Behandlung der Netzhautablösung durch operative Entleerung der subretinalen Flüssigkeit und Einspritzung von Luft in den Glaskörper , 1911, Albrecht von Graefes Archiv für Ophthalmologie.

[34]  Glenn J Jaffe,et al.  Intravitreal aflibercept injection for neovascular age-related macular degeneration: ninety-six-week results of the VIEW studies. , 2014, Ophthalmology.

[35]  M. Elman,et al.  Dexamethasone implant anterior chamber migration: risk factors, complications, and management strategies. , 2014, Ophthalmology.

[36]  J. Vander Dexamethasone Intravitreal Implant for Noninfectious Intermediate or Posterior Uveitis , 2012 .

[37]  H. Perry,et al.  Intravitreal injections by a Dermojet syringe. , 1977, Annals of ophthalmology.