Analysis of solar chimney power plant utilizing chimney discrete model

The paper presents a mathematical thermal model for steady state airflow inside a solar chimney power plant using modified Bernoulli equation with buoyancy effect and ideal gas equation. The study evaluates the use of constant density assumption across the solar chimney and compares it with more realistic chimney mathematical discrete model that allows density variation across the chimney. The result shows that using a constant density assumption through the solar chimney can simplify the analytical model however it over predicts the power generation. The results show that the chimney height, the collector radius, the solar irradiance, and the turbine head are essential parameters for the design of solar chimneys. The maximum power generation depends on the turbine head and the relation is not monotonic.

[1]  Theodor W. von Backström,et al.  Analysis of some available heat transfer coefficients applicable to solar chimney power plant collectors , 2009 .

[2]  W. Haaf,et al.  Solar Chimneys: Part II: Preliminary Test Results from the Manzanares Pilot Plant , 1984 .

[3]  Mohammad O. Hamdan,et al.  Analysis of a solar chimney power plant in the Arabian Gulf region , 2011 .

[4]  Xinping Zhou,et al.  Analysis of chimney height for solar chimney power plant , 2009 .

[5]  A. Balouktsis,et al.  Modeling of the optimum tilt of a solar chimney for maximum air flow , 2008 .

[6]  A. Balouktsis,et al.  DESIGN AND TESTING OF A NEW SOLAR TRAY DRYER , 2002 .

[7]  Majid Amidpour,et al.  Modeling and numerical simulation of solar chimney power plants , 2011 .

[8]  M. A. dos S. Bernardes,et al.  Thermal and technical analyses of solar chimneys , 2003 .

[9]  Jyotirmay Mathur,et al.  Modeling of window-sized solar chimneys for ventilation , 2005 .

[10]  Wolfgang Schiel,et al.  Design of Commercial Solar Updraft Tower Systems—Utilization of Solar Induced Convective Flows for Power Generation , 2005 .

[11]  Sérgio de Morais Hanriot,et al.  Energy and exergy analysis of the airflow inside a solar chimney , 2013 .

[12]  B. A. Kashiwa,et al.  The solar cyclone: A solar chimney for harvesting atmospheric water , 2008 .

[13]  Yan Ding,et al.  Numerical analysis on an industrial-scaled solar updraft power plant system with ambient crosswind , 2014 .

[14]  Xinping Zhou,et al.  Experimental study of temperature field in a solar chimney power setup , 2007 .

[15]  Sandro Nizetic,et al.  Analysis and feasibility of implementing solar chimney power plants in the Mediterranean region , 2008 .

[16]  A. Abdel-azim Fundamentals of Heat and Mass Transfer , 2011 .

[17]  F. K. Forson,et al.  Simulation and optimisation of the ventilation in a chimney-dependent solar crop dryer , 2011 .

[18]  Ramon Molina Valle,et al.  Theoretical evaluation of the influence of geometric parameters and materials on the behavior of the airflow in a solar chimney , 2009 .

[19]  Frank P. Incropera,et al.  Fundamentals of Heat and Mass Transfer , 1981 .

[20]  Mohammad O. Hamdan Analytical Thermal Analysis of Solar Chimney Power Plant , 2010 .

[21]  J. Schlaich,et al.  Solar Chimneys Part I: Principle and Construction of the Pilot Plant in Manzanares , 1983 .

[22]  Moh’d A. Al-Nimr,et al.  Dynamic behaviour of baffled solar air heaters , 1998 .

[23]  Fang Wang,et al.  A review of solar chimney power technology , 2010, Renewable and Sustainable Energy Reviews.

[24]  Atit Koonsrisuk,et al.  Dynamic similarity in solar chimney modeling , 2007 .

[25]  H. Tabor,et al.  Solar energy research: Program in the new desert research institute in Beersheba☆ , 1958 .