Liquid metal batteries - materials selection and fluid dynamics
暂无分享,去创建一个
Frank Stefani | Andreas Bund | Gerrit Maik Horstmann | Norbert Weber | Michael Nimtz | A. Bund | S. Landgraf | Michael Nimtz | N. Weber | T. Weier | F. Stefani | G. Horstmann | Tom Weier | W. El-Mofid | C. C. Lalau | Steffen Landgraf | M. Starace | C. Lalau | M. Starace | M. Nimtz | N. Weber | W. El-Mofid
[1] Bruno Scrosati,et al. Ionic-liquid materials for the electrochemical challenges of the future. , 2009, Nature materials.
[2] P. Davidson. An Introduction to Magnetohydrodynamics , 2001 .
[3] J. Guermond,et al. Tayler instability in liquid metal columns and liquid metal batteries , 2015, Journal of Fluid Mechanics.
[4] J. A. Shercliff. Fluid motions due to an electric current source , 1970, Journal of Fluid Mechanics.
[5] Heat and mass transfer in electrically induced vortical flows , 1989 .
[6] P. Beckstein,et al. Sloshing instability and electrolyte layer rupture in liquid metal batteries , 2016, 1612.03683.
[7] Donald R. Sadoway,et al. Lithium–antimony–lead liquid metal battery for grid-level energy storage , 2014, Nature.
[8] O. Zikanov. Metal pad instabilities in liquid metal batteries. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.
[9] V. Galindo,et al. The influence of current collectors on Tayler instability and electro-vortex flows in liquid metal batteries , 2014, 1409.3735.
[10] A. Jardy,et al. Magnetohydronamic and thermal behavior of electroslag remelting slags , 1991 .
[11] Helena L. Chum,et al. Review of thermally regenerative electrochemical systems , 1981 .
[12] Donald R. Sadoway,et al. Self-healing Li–Bi liquid metal battery for grid-scale energy storage , 2015 .
[13] Thorleif Sele,et al. Instabilities of the metal surface in electrolytic alumina reduction cells , 1977 .
[14] J. Schumacher,et al. Thermal Rayleigh-Marangoni convection in a three-layer liquid-metal-battery model. , 2017, Physical review. E.
[15] V. Galindo,et al. The Tayler instability at low magnetic Prandtl numbers: between chiral symmetry breaking and helicity oscillations , 2015, 1504.06120.
[16] H. E. Bartlett,et al. A comparison of entropies for several molten binary sodium alloys , 1970 .
[17] O. Zikanov,et al. Thermal convection in a liquid metal battery , 2015, 1507.08315.
[18] D. Sadoway,et al. Mixing in a liquid metal electrode , 2014 .
[19] D. Sadoway,et al. Communication—Molten Amide-Hydroxide-Iodide Electrolyte for a Low-Temperature Sodium-Based Liquid Metal Battery , 2017 .
[20] H. Sakaebe,et al. Discharge–charge properties of Li/LiCoO2 cell using room temperature ionic liquids (RTILs) based on quaternary ammonium cation – Effect of the structure , 2005 .
[21] D. Walsh,et al. Room temperature ionic liquid electrolytes for redox flow batteries , 2015 .
[22] D. Bradwell,et al. Magnesium-antimony liquid metal battery for stationary energy storage. , 2012, Journal of the American Chemical Society.
[23] A. Bund,et al. An Electrochemical and Photoelectron Spectroscopy Study of a Low Temperature Liquid Metal Battery Based on an Ionic Liquid Electrolyte , 2016 .
[24] Brian L. Spatocco,et al. Liquid metal batteries: past, present, and future. , 2013, Chemical reviews.
[25] C. Sozou,et al. Nonlinear fluid motions in a container due to the discharge of an electric current , 1984, Journal of Fluid Mechanics.
[26] Frank Stefani,et al. Numerical simulation of the Tayler instability in liquid metals , 2012, 1212.3187.
[27] Brian L. Spatocco,et al. Low-Temperature Molten Salt Electrolytes for Membrane-Free Sodium Metal Batteries , 2015 .
[28] Robert D Weaver,et al. The Sodium|Tin Liquid‐Metal Cell , 1962 .
[29] G. Gerbeth,et al. How to circumvent the size limitation of liquid metal batteries due to the Tayler instability , 2010, 1005.5046.
[30] R. Tayler. The Adiabatic Stability of Stars Containing Magnetic Fields–I: TOROIDAL FIELDS , 1973 .
[31] V. Bojarevics,et al. Long waves instability of liquid metal-electrolyte interface in aluminium electrolysis cells: a generalization of Sele's criterion , 1994 .
[32] P. A. Davidson. An Introduction to Magnetohydrodynamics: The Fundamentals of MHD , 2001 .
[33] F. Krause,et al. The Inverse Scattering Transformation and the Theory of Solitons. By W. ECKHAUS and A. VAN HARTEN. North-Holland, 1981. 222pp. $31.75. , 1982, Journal of Fluid Mechanics.
[34] M. Stanley Whittingham,et al. History, Evolution, and Future Status of Energy Storage , 2012, Proceedings of the IEEE.
[35] E. Shcherbinin. Electrically Induced Vortical Flows , 1988 .
[36] D. Swinkels,et al. Molten Salt Batteries and Fuel Cells , 1971 .
[37] V. Galindo,et al. Current-driven flow instabilities in large-scale liquid metal batteries, and how to tame them , 2013, 1311.7306.
[38] A. A. Yaroshevsky. Abundances of chemical elements in the Earth’s crust , 2006 .
[39] Matti Latva-aho,et al. Models for the modern power grid , 2013, 1401.0260.
[40] B. Agruss,et al. The Thermally Regenerative Liquid‐Metal Cell , 1963 .
[41] M. Itoh,et al. Thermodynamic investigations of liquid Bi-Na and Sn-Na alloys by coulometric titration using β″-alumina , 1991 .
[42] E. Cairns,et al. High-temperature batteries. , 1969, Science.
[43] Peter Davidson,et al. Stability of interfacial waves in aluminium reduction cells , 1998 .
[44] Hojong Kim,et al. Calcium–bismuth electrodes for large-scale energy storage (liquid metal batteries) , 2013 .
[45] Thomas Gundrum,et al. D ec 2 01 1 Experimental evidence for Tayler instability in a liquid metal column , 2011 .