Liquid metal batteries - materials selection and fluid dynamics

Liquid metal batteries are possible candidates for massive and economically feasible large-scale stationary storage and as such could be key components of future energy systems based mainly or exclusively on intermittent renewable electricity sources. The completely liquid interior of liquid metal batteries and the high current densities give rise to a multitude of fluid flow phenomena that will primarily influence the operation of future large cells, but might be important for today's smaller cells as well. The paper at hand starts with a discussion of the relative merits of using molten salts or ionic liquids as electrolytes for liquid metal cells and touches the choice of electrode materials. This excursus into electrochemistry is followed by an overview of investigations on magnetohydrodynamic instabilities in liquid metal batteries, namely the Tayler instability and electromagnetically excited gravity waves. A section on electro-vortex flows complements the discussion of flow phenomena. Focus of the flow related investigations lies on the integrity of the electrolyte layer and related critical parameters.

[1]  Bruno Scrosati,et al.  Ionic-liquid materials for the electrochemical challenges of the future. , 2009, Nature materials.

[2]  P. Davidson An Introduction to Magnetohydrodynamics , 2001 .

[3]  J. Guermond,et al.  Tayler instability in liquid metal columns and liquid metal batteries , 2015, Journal of Fluid Mechanics.

[4]  J. A. Shercliff Fluid motions due to an electric current source , 1970, Journal of Fluid Mechanics.

[5]  Heat and mass transfer in electrically induced vortical flows , 1989 .

[6]  P. Beckstein,et al.  Sloshing instability and electrolyte layer rupture in liquid metal batteries , 2016, 1612.03683.

[7]  Donald R. Sadoway,et al.  Lithium–antimony–lead liquid metal battery for grid-level energy storage , 2014, Nature.

[8]  O. Zikanov Metal pad instabilities in liquid metal batteries. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  V. Galindo,et al.  The influence of current collectors on Tayler instability and electro-vortex flows in liquid metal batteries , 2014, 1409.3735.

[10]  A. Jardy,et al.  Magnetohydronamic and thermal behavior of electroslag remelting slags , 1991 .

[11]  Helena L. Chum,et al.  Review of thermally regenerative electrochemical systems , 1981 .

[12]  Donald R. Sadoway,et al.  Self-healing Li–Bi liquid metal battery for grid-scale energy storage , 2015 .

[13]  Thorleif Sele,et al.  Instabilities of the metal surface in electrolytic alumina reduction cells , 1977 .

[14]  J. Schumacher,et al.  Thermal Rayleigh-Marangoni convection in a three-layer liquid-metal-battery model. , 2017, Physical review. E.

[15]  V. Galindo,et al.  The Tayler instability at low magnetic Prandtl numbers: between chiral symmetry breaking and helicity oscillations , 2015, 1504.06120.

[16]  H. E. Bartlett,et al.  A comparison of entropies for several molten binary sodium alloys , 1970 .

[17]  O. Zikanov,et al.  Thermal convection in a liquid metal battery , 2015, 1507.08315.

[18]  D. Sadoway,et al.  Mixing in a liquid metal electrode , 2014 .

[19]  D. Sadoway,et al.  Communication—Molten Amide-Hydroxide-Iodide Electrolyte for a Low-Temperature Sodium-Based Liquid Metal Battery , 2017 .

[20]  H. Sakaebe,et al.  Discharge–charge properties of Li/LiCoO2 cell using room temperature ionic liquids (RTILs) based on quaternary ammonium cation – Effect of the structure , 2005 .

[21]  D. Walsh,et al.  Room temperature ionic liquid electrolytes for redox flow batteries , 2015 .

[22]  D. Bradwell,et al.  Magnesium-antimony liquid metal battery for stationary energy storage. , 2012, Journal of the American Chemical Society.

[23]  A. Bund,et al.  An Electrochemical and Photoelectron Spectroscopy Study of a Low Temperature Liquid Metal Battery Based on an Ionic Liquid Electrolyte , 2016 .

[24]  Brian L. Spatocco,et al.  Liquid metal batteries: past, present, and future. , 2013, Chemical reviews.

[25]  C. Sozou,et al.  Nonlinear fluid motions in a container due to the discharge of an electric current , 1984, Journal of Fluid Mechanics.

[26]  Frank Stefani,et al.  Numerical simulation of the Tayler instability in liquid metals , 2012, 1212.3187.

[27]  Brian L. Spatocco,et al.  Low-Temperature Molten Salt Electrolytes for Membrane-Free Sodium Metal Batteries , 2015 .

[28]  Robert D Weaver,et al.  The Sodium|Tin Liquid‐Metal Cell , 1962 .

[29]  G. Gerbeth,et al.  How to circumvent the size limitation of liquid metal batteries due to the Tayler instability , 2010, 1005.5046.

[30]  R. Tayler The Adiabatic Stability of Stars Containing Magnetic Fields–I: TOROIDAL FIELDS , 1973 .

[31]  V. Bojarevics,et al.  Long waves instability of liquid metal-electrolyte interface in aluminium electrolysis cells: a generalization of Sele's criterion , 1994 .

[32]  P. A. Davidson An Introduction to Magnetohydrodynamics: The Fundamentals of MHD , 2001 .

[33]  F. Krause,et al.  The Inverse Scattering Transformation and the Theory of Solitons. By W. ECKHAUS and A. VAN HARTEN. North-Holland, 1981. 222pp. $31.75. , 1982, Journal of Fluid Mechanics.

[34]  M. Stanley Whittingham,et al.  History, Evolution, and Future Status of Energy Storage , 2012, Proceedings of the IEEE.

[35]  E. Shcherbinin Electrically Induced Vortical Flows , 1988 .

[36]  D. Swinkels,et al.  Molten Salt Batteries and Fuel Cells , 1971 .

[37]  V. Galindo,et al.  Current-driven flow instabilities in large-scale liquid metal batteries, and how to tame them , 2013, 1311.7306.

[38]  A. A. Yaroshevsky Abundances of chemical elements in the Earth’s crust , 2006 .

[39]  Matti Latva-aho,et al.  Models for the modern power grid , 2013, 1401.0260.

[40]  B. Agruss,et al.  The Thermally Regenerative Liquid‐Metal Cell , 1963 .

[41]  M. Itoh,et al.  Thermodynamic investigations of liquid Bi-Na and Sn-Na alloys by coulometric titration using β″-alumina , 1991 .

[42]  E. Cairns,et al.  High-temperature batteries. , 1969, Science.

[43]  Peter Davidson,et al.  Stability of interfacial waves in aluminium reduction cells , 1998 .

[44]  Hojong Kim,et al.  Calcium–bismuth electrodes for large-scale energy storage (liquid metal batteries) , 2013 .

[45]  Thomas Gundrum,et al.  D ec 2 01 1 Experimental evidence for Tayler instability in a liquid metal column , 2011 .