A semantic-based approach for querying linked data using natural language

The semantic Web aims to provide to Web information with a well-defined meaning and make it understandable not only by humans but also by computers, thus allowing the automation, integration and reuse of high-quality information across different applications. However, current information retrieval mechanisms for semantic knowledge bases are intended to be only used by expert users. In this work, we propose a natural language interface that allows non-expert users the access to this kind of information through formulating queries in natural language. The present approach uses a domain-independent ontology model to represent the question’s structure and context. Also, this model allows determination of the answer type expected by the user based on a proposed question classification. To prove the effectiveness of our approach, we have conducted an evaluation in the music domain using LinkedBrainz, an effort to provide the MusicBrainz information as structured data on the Web by means of Semantic Web technologies. Our proposal obtained encouraging results based on the F-measure metric, ranging from 0.74 to 0.82 for a corpus of questions generated by a group of real-world end users.

[1]  Sanda M. Harabagiu,et al.  The Structure and Performance of an Open-Domain Question Answering System , 2000, ACL.

[2]  Philipp Cimiano,et al.  Towards portable natural language interfaces to knowledge bases - The case of the ORAKEL system , 2008, Data Knowl. Eng..

[3]  Yarden Katz,et al.  Pellet: A practical OWL-DL reasoner , 2007, J. Web Semant..

[4]  Asunción Gómez-Pérez,et al.  ONTOMETRIC: A Method to Choose the Appropriate Ontology , 2004, J. Database Manag..

[5]  José Luis Vicedo González,et al.  Addressing ontology-based question answering with collections of user queries , 2009, Inf. Process. Manag..

[6]  Dieter Fensel,et al.  Knowledge Engineering: Principles and Methods , 1998, Data Knowl. Eng..

[7]  Sanjay K. Dwivedi,et al.  Integrated Question Classification based on Rules and Pattern Matching , 2014, ICTCS '14.

[8]  Ralph Grishman,et al.  Message Understanding Conference- 6: A Brief History , 1996, COLING.

[9]  Miguel Ángel Rodríguez-García,et al.  Open Idea: Plataforma inteligente para gestión de ideas innovadoras , 2014, Proces. del Leng. Natural.

[10]  Abraham Bernstein,et al.  Evaluating the usability of natural language query languages and interfaces to Semantic Web knowledge bases , 2010, J. Web Semant..

[11]  A. Swartz MusicBrainz: A Semantic Web Service , 2002, IEEE Intell. Syst..

[12]  Miguel Ángel Rodríguez-García,et al.  Ontology-based annotation and retrieval of services in the cloud , 2014, Knowl. Based Syst..

[13]  Mark B. Sandler,et al.  Evaluation of the Music Ontology Framework , 2012, ESWC.

[14]  Michael Jason Minock,et al.  Towards Building Robust Natural Language Interfaces to Databases , 2008, NLDB.

[15]  Kalina Bontcheva,et al.  Improving habitability of natural language interfaces for querying ontologies with feedback and clarification dialogues , 2013, J. Web Semant..

[16]  Kalina Bontcheva,et al.  Getting More Out of Biomedical Documents with GATE's Full Lifecycle Open Source Text Analytics , 2013, PLoS Comput. Biol..

[17]  Hamish Cunningham,et al.  FREyA: An Interactive Way of Querying Linked Data Using Natural Language , 2011, ESWC Workshops.

[18]  James A. Hendler,et al.  The Semantic Web" in Scientific American , 2001 .

[19]  Tim Berners-Lee,et al.  Linked Data - The Story So Far , 2009, Int. J. Semantic Web Inf. Syst..

[20]  Rafael Valencia-García,et al.  BioOntoVerb: A top level ontology based framework to populate biomedical ontologies from texts , 2012, Knowl. Based Syst..

[21]  Dan Brickley,et al.  FOAF Vocabulary Specification , 2004 .

[22]  Somjit Arch-int,et al.  Semantic Ontology Mapping for Interoperability of Learning Resource Systems using a rule-based reasoning approach , 2013, Expert Syst. Appl..

[23]  E. Prud hommeaux,et al.  SPARQL query language for RDF , 2011 .

[24]  Esra Erdem,et al.  Ontological query answering about rehabilitation robotics , 2014 .

[25]  Amit P. Sheth,et al.  Semantic Services, Interoperability and Web Applications - Emerging Concepts , 2011, Semantic Services, Interoperability and Web Applications.

[26]  Abraham Bernstein,et al.  Querix: A Natural Language Interface to Query Ontologies Based on Clarification Dialogs , 2006 .

[27]  Miloslav Konopík,et al.  SWSNL: Semantic Web Search Using Natural Language , 2013, Expert Syst. Appl..

[28]  Patrick Le Boeuf,et al.  FRBR and Further , 2001 .

[29]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[30]  Vladimir Stantchev,et al.  Applications of ontologies in knowledge representation of human perception , 2014, Int. J. Metadata Semant. Ontologies.

[31]  Günter Neumann,et al.  Category-specific models for ranking effective paraphrases in community Question Answering , 2014, Expert Syst. Appl..

[32]  Miguel Ángel Rodríguez-García,et al.  Feature-based opinion mining through ontologies , 2014, Expert Syst. Appl..

[33]  Claire Gardent,et al.  Quelo Natural Language Interface: Generating queries and answer descriptions , 2014 .

[34]  Fabio Ciravegna,et al.  Evaluating Semantic Search Query Approaches with Expert and Casual Users , 2012, SEMWEB.

[35]  Rafael Valencia-García,et al.  RecomMetz: A context-aware knowledge-based mobile recommender system for movie showtimes , 2015, Expert Syst. Appl..

[36]  Enrico Motta,et al.  AquaLog: An Ontology-Portable Question Answering System for the Semantic Web , 2005, ESWC.

[37]  George Hripcsak,et al.  Technical Brief: Agreement, the F-Measure, and Reliability in Information Retrieval , 2005, J. Am. Medical Informatics Assoc..