A 69-to-79GHz CMOS multiport PA/radiator with +35.7dBm CW EIRP and integrated PLL

Low-cost mm-wave silicon integrated signal generation and processing enable many applications, such as silicon-based automotive radars for self-driving cars and wireless communications. Some challenges encountered in commercialization of such systems are the high packaging and testing costs and high sensitivity to antenna parameters, which can diminish the advantage of integrated silicon solutions. On-chip antennas have been proposed as a solution to reduce the packaging costs [1,2]. Link budget analysis of systems (e.g., radar) necessitates high-power (high EIRP) transmitters while system resolution analysis suggests higher frequency of operation for better spatial resolution. The scaling of CMOS transistors facilitates the latter requirement, but, unfortunately, the lower breakdown voltage of the transistors reduces their maximum power handling capabilities at a given radiator impedance. Several approaches have already been implemented to address this issue, each with its own shortcoming. Power-combining multiple PA outputs with passive on-chip power combiners [3] adds extra loss and reduces the overall efficiency, spatial power combining using phased arrays [4] consumes a large die area. Power combining at the antenna [5,6] has been proposed as an approach to address these challenges. In this paper, we propose a spatial PA/radiator power combining approach with optimal PA-load design using strongly coupled antennas in close proximity. This approach utilizes techniques of power combining in free space resulting in favorable drive-point impedance design and using on-chip PAs and radiators to achieve high radiated output power.

[1]  Fei Wang,et al.  17.3 A 60GHz on-chip linear radiator with single-element 27.9dBm Psat and 33.1dBm peak EIRP using multifeed antenna for direct on-antenna power combining , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[2]  Kaushik Sengupta,et al.  20.2 A frequency-reconfigurable mm-Wave power amplifier with active-impedance synthesis in an asymmetrical non-isolated combiner , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[3]  D. Liu,et al.  A 60GHz packaged switched beam 32nm CMOS TRX with broad spatial coverage, 17.1dBm peak EIRP, 6.1dB NF at < 250mW , 2016, 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[4]  A. Hajimiri,et al.  A 77GHz 4-Element Phased Array Receiver with On-Chip Dipole Antennas in Silicon , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[5]  Jri Lee,et al.  A 94GHz 3D-image radar engine with 4TX/4RX beamforming scan technique in 65nm CMOS , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[6]  Ali Hajimiri,et al.  An integrated traveling-wave slot radiator , 2014, 2014 IEEE Radio Frequency Integrated Circuits Symposium.

[7]  Gabriel M. Rebeiz,et al.  A 108–112 GHz 4×4 wafer-scale phased array transmitter with high-efficiency on-chip antennas , 2012, 2012 IEEE Radio Frequency Integrated Circuits Symposium.

[8]  A. Hajimiri,et al.  A 77GHz Phased-Array Transmitter with Local LO-Path Phase-Shifting in Silicon , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.