Measuring the Elemental Composition of Phobos: The Mars‐moon Exploration with GAmma rays and NEutrons (MEGANE) Investigation for the Martian Moons eXploration (MMX) Mission

[1]  Bruce Hapke,et al.  Space weathering from Mercury to the asteroid belt , 2001 .

[2]  H. Iwamori,et al.  Mixing relations of the howardite‐eucrite‐diogenite suite: A new statistical approach of independent component analysis for the Dawn mission , 2013 .

[3]  L. Nittler,et al.  Compositional terranes on Mercury: Information from fast neutrons , 2017 .

[4]  J. Wasson,et al.  Compositions of chondrites , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[5]  Alan B. Binder,et al.  Chemical information content of lunar thermal and epithermal neutrons , 2000 .

[6]  Junichiro Kawaguchi,et al.  Oxygen Isotopic Compositions of Asteroidal Materials Returned from Itokawa by the Hayabusa Mission , 2011, Science.

[7]  R. Reedy,et al.  Constraints on Vesta's elemental composition: Fast neutron measurements by Dawn's gamma ray and neutron detector , 2013, Meteoritics & planetary science.

[8]  Pascal Rosenblatt,et al.  On the formation of the martian moons from a circum-martian accretion disk , 2012 .

[9]  T. Hashimoto,et al.  Incipient Space Weathering Observed on the Surface of Itokawa Dust Particles , 2011, Science.

[10]  E. Kührt,et al.  A thermal model of the Martian satellites , 1989 .

[11]  L. Nittler,et al.  Hydrogen and major element concentrations on 433 Eros: Evidence for an L‐ or LL‐chondrite‐like surface composition , 2015, Meteoritics & planetary science.

[12]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[13]  P G Brown,et al.  The fall, recovery, orbit, and composition of the Tagish Lake meteorite: a new type of carbonaceous chondrite. , 2000, Science.

[14]  S. Maurice,et al.  Fluxes of fast and epithermal neutrons from Lunar Prospector: evidence for water ice at the lunar poles. , 1998, Science.

[15]  R. Reedy,et al.  Neutron absorption constraints on the composition of 4 Vesta , 2013 .

[16]  Andrew Scott Rivkin,et al.  Phobos and Deimos , 2015 .

[17]  James W. Head,et al.  Mars impact ejecta in the regolith of Phobos: Bulk concentration and distribution , 2013 .

[18]  Joseph A. Burns,et al.  The dynamical evolution and origin of the Martian moons , 1978 .

[19]  Carolyn M. Ernst,et al.  The Small Body Mapping Tool (SBMT) for Accessing, Visualizing, and Analyzing Spacecraft Data in Three Dimensions , 2018 .

[20]  John O. Goldsten,et al.  Radiation damage and annealing of three coaxial n-type germanium detectors: Preparation for spaceflight missions to asteroid 16 Psyche and Mars’ moon Phobos , 2019, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[21]  Nicolas Thomas,et al.  Spectral heterogeneity on Phobos and Deimos: HiRISE observations and comparisons to Mars Pathfinder results , 2010 .

[22]  L. Nittler,et al.  Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER's X-Ray Spectrometer , 2015 .

[23]  Robert L. Tokar,et al.  Global Distribution of Neutrons from Mars: Results from Mars Odyssey , 2002, Science.

[24]  Joshua Patrick Emery,et al.  The surface composition of Trojan asteroids: constraints set by scattering theory , 2004 .

[25]  R. Reedy,et al.  Concentrations of potassium and thorium within Vesta’s regolith , 2015 .

[26]  T. Matsunaga,et al.  Space‐Weathered Anorthosite as Spectral D‐Type Material on the Martian Satellites , 2018 .

[27]  Scott L. Murchie,et al.  Spectral Properties and Heterogeneity of PHOBOS from Measurements by PHOBOS 2 , 1996 .

[28]  H. McSween,et al.  Geochemistry of 4 Vesta based on HED meteorites: Prospective study for interpretation of gamma ray and neutron spectra for the Dawn mission , 2007 .

[29]  Richard V. Morris,et al.  The optical properties of the finest fraction of lunar soil: Implications for space weathering , 2001 .

[30]  Junichiro Kawaguchi,et al.  Itokawa Dust Particles: A Direct Link Between S-Type Asteroids and Ordinary Chondrites , 2011, Science.

[31]  Mar Vaquero,et al.  Transfer of impact ejecta material from the surface of Mars to Phobos and Deimos. , 2013, Astrobiology.

[32]  Richard D. Starr,et al.  Elemental composition from gamma‐ray spectroscopy of the NEAR‐Shoemaker landing site on 433 Eros , 2001 .

[33]  S. Charnoz,et al.  On the Impact Origin of Phobos and Deimos. III. Resulting Composition from Different Impactors , 2017, 1712.05154.

[34]  K. Tsiganis,et al.  Origin of the orbital architecture of the giant planets of the Solar System , 2005, Nature.

[35]  T. Prettyman,et al.  K‐Th‐Ti systematics and new three‐component mixing model of HED meteorites: Prospective study for interpretation of gamma‐ray and neutron spectra for the Dawn mission , 2010 .

[36]  H. Wänke,et al.  Chemical composition and accretion history of terrestrial planets , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[37]  L. Nittler,et al.  Geochemical terranes of Mercury’s northern hemisphere as revealed by MESSENGER neutron measurements , 2015 .

[38]  A. Higuchi,et al.  Temporary Capture of Asteroids by an Eccentric Planet , 2017, 1702.07352.

[39]  Paul G. Lucey,et al.  Lunar rare earth element distribution and ramifications for FeO and TiO2: Lunar Prospector neutron spectrometer observations , 2000 .

[40]  D. Trilling,et al.  Near-Infrared Spectrophotometry of Phobos and Deimos , 2002 .

[41]  Cesare Barbieri,et al.  PHOBOS AS A D-TYPE CAPTURED ASTEROID, SPECTRAL MODELING FROM 0.25 TO 4.0 μm , 2013 .

[42]  Paul G. Lucey,et al.  High‐energy neutrons from the Moon , 2000 .

[43]  B. Jakosky,et al.  Dust observations at orbital altitudes surrounding Mars , 2015, Science.

[44]  S. Maurice,et al.  Reduction of neutron data from Lunar Prospector , 2004 .

[45]  D. Scheeres,et al.  Dynamics in the Phobos environment , 2019, Advances in Space Research.

[46]  J. Veverka,et al.  Viking observations of Phobos and Deimos: Preliminary results , 1977 .

[47]  H. McSween,et al.  Igneous lithologies on asteroid (4) Vesta mapped using gamma-ray and neutron data , 2017 .

[48]  R. A. Forster,et al.  Initial MCNP6 Release Overview - MCNP6 version 1.0 , 2013 .

[49]  Raymond E. Arvidson,et al.  Spectral absorptions on Phobos and Deimos in the visible/near infrared wavelengths and their compositional constraints , 2014 .

[50]  Thomas H. Prettyman,et al.  Gamma-Ray, Neutron, and Alpha-Particle Spectrometers for the Lunar Prospector mission , 2004 .

[51]  P. Peplowski The global elemental composition of 433 Eros: First results from the NEAR gamma-ray spectrometer orbital dataset , 2016 .

[52]  Raymond E. Arvidson,et al.  Analysis of disk‐resolved OMEGA and CRISM spectral observations of Phobos and Deimos , 2012 .

[53]  Richard D. Starr,et al.  Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars , 2007 .

[54]  K. R. Ramsley,et al.  The surface geology and geomorphology of Phobos , 2014 .

[55]  Joseph A. Burns,et al.  Contradictory clues as to the origin of the Martian moons , 1992 .

[56]  H. McSween,et al.  Chapter 6. MARTIAN METEORITES , 1998 .

[57]  P. Lucey,et al.  Radiative Transfer Modeling of MESSENGER VIRS Spectra: Detection and Mapping of Submicroscopic Iron and Carbon , 2017 .

[58]  Thomas H. Prettyman,et al.  Improved modeling of Lunar Prospector neutron spectrometer data: Implications for hydrogen deposits at the lunar poles , 2006 .

[59]  A. Rubin,et al.  THE COMPOSITIONAL CLASSIFICATION OF CHONDRITES. VI: THE CR CARBONACEOUS CHONDRITE GROUP , 1994 .

[60]  David Bazell,et al.  Evidence for Water Ice Near Mercury’s North Pole from MESSENGER Neutron Spectrometer Measurements , 2013, Science.

[61]  R. Craddock,et al.  Are Phobos and Deimos the result of a giant impact , 2011 .

[62]  Carolyn M. Ernst,et al.  Remote sensing evidence for an ancient carbon-bearing crust on Mercury , 2016 .

[63]  Thomas C. Duxbury,et al.  Compositional interpretation of PFS/MEx and TES/MGS thermal infrared spectra of Phobos , 2011 .

[64]  William K. Hartmann,et al.  Additional evidence about an early intense flux of C asteroids and the origin of Phobos , 1990 .

[65]  Richard D. Starr,et al.  The MESSENGER Gamma-Ray Spectrometer: Calibration and operations , 2017 .

[66]  Pascal Rosenblatt,et al.  Accretion of Phobos and Deimos in an extended debris disc stirred by transient moons , 2016 .

[67]  Thomas H. Prettyman,et al.  Elemental composition of the lunar surface: Analysis of gamma ray spectroscopy data from Lunar Prospector , 2006 .

[68]  D. Sears,et al.  Space weathering and the low sulfur abundance of Eros , 2005 .

[69]  Richard V. Morris,et al.  Space weathering on airless bodies: Resolving a mystery with lunar samples , 2000 .

[70]  H. McSween,et al.  Using HED meteorites to interpret neutron and gamma‐ray data from asteroid 4 Vesta , 2015 .

[71]  Kim Strohbehn,et al.  The MESSENGER Gamma-Ray and Neutron Spectrometer , 2007 .

[72]  Thomas H. Prettyman,et al.  Composition from fast neutrons: Application to the Moon , 2001 .

[73]  D. Lawrence,et al.  Geochemistry of the lunar highlands as revealed by measurements of thermal neutrons , 2016, Journal of geophysical research. Planets.

[74]  Olivier Forni,et al.  Elemental Mapping by Dawn Reveals Exogenic H in Vesta’s Regolith , 2012, Science.

[75]  S. Charnoz,et al.  On the Impact Origin of Phobos and Deimos. IV. Volatile Depletion , 2018, The Astrophysical Journal.

[76]  S. Maurice,et al.  Mars Odyssey neutron data: 1. Data processing and models of water‐equivalent‐hydrogen distribution , 2011 .

[77]  Harry Y. McSween,et al.  Elemental Composition of the Martian Crust , 2009, Science.