Facile hydrothermal synthesis of mesoporous nickel oxide/reduced graphene oxide composites for high performance electrochemical supercapacitor

[1]  J. Tu,et al.  NiO nanoflakes grown on porous graphene frameworks as advanced electrochemical pseudocapacitor materials , 2014 .

[2]  Guowei Zhou,et al.  Spherical mesoporous TiO2 fabricated by sodium dodecyl sulfate-assisted hydrothermal treatment and its photocatalytic decomposition of papermaking wastewater , 2014 .

[3]  Masataka Hakamada,et al.  Fabrication of carbon nanotube/NiOx(OH)y nanocomposite by pulsed electrodeposition for supercapacitor applications , 2014 .

[4]  Hao Wang,et al.  Synthesis and electrochemical properties of MnO2 nanorods/graphene composites for supercapacitor applications , 2013 .

[5]  P. Fan,et al.  The characterizations and electrochemical properties of lignosulfonate templates based mesoporous NiO , 2013 .

[6]  Bin Wang,et al.  Hydrothermal synthesis of carbon nanotube/cubic Fe3O4 nanocomposite for enhanced performance supercapacitor electrode material , 2013 .

[7]  Yi Xie,et al.  Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. , 2013, Nano letters.

[8]  A. Manivannan,et al.  A reduced graphene oxide/Co3O4 composite for supercapacitor electrode , 2013 .

[9]  Chaohe Xu,et al.  Template-free approach to synthesize hierarchical porous nickel cobalt oxides for supercapacitors. , 2012, Nanoscale.

[10]  K. Ryu,et al.  NiO nanoparticles with plate structure grown on graphene as fast charge–discharge anode material for lithium ion batteries , 2012 .

[11]  Guangyuan Zheng,et al.  Rechargeable Li–O2 batteries with a covalently coupled MnCo2O4–graphene hybrid as an oxygen cathode catalyst , 2012 .

[12]  K. Liang,et al.  High-performance three-dimensional nanoporous NiO film as a supercapacitor electrode , 2012 .

[13]  Qiyuan He,et al.  Graphene-based electronic sensors , 2012 .

[14]  M. Chan-Park,et al.  3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. , 2012, ACS nano.

[15]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[16]  L. Zhai,et al.  Structural evolution of multi-walled carbon nanotube/MnO2 composites as supercapacitor electrodes , 2012 .

[17]  Lijia Pan,et al.  Graphene anchored with mesoporous NiO nanoplates as anode material for lithium-ion batteries , 2012, Journal of Solid State Electrochemistry.

[18]  J. Tu,et al.  Graphene sheet/porous NiO hybrid film for supercapacitor applications. , 2011, Chemistry.

[19]  G. R. Rao,et al.  Ultralayered Co3O4 for High-Performance Supercapacitor Applications , 2011 .

[20]  G. Yin,et al.  Cu2O@reduced graphene oxide composite for removal of contaminants from water and supercapacitors , 2011 .

[21]  Huakun Liu,et al.  Synthesis and characterization of graphene-nickel oxide nanostructures for fast charge-discharge application , 2011 .

[22]  Xiuli Wang,et al.  Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance , 2011 .

[23]  Ke‐long Huang,et al.  Meso-macroporous Co3O4 electrode prepared by polystyrene spheres and carbowax templates for supercapacitors , 2011 .

[24]  H. Ahn,et al.  Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance , 2011 .

[25]  G. R. Rao,et al.  Pine-cone morphology and pseudocapacitive behavior of nanoporous nickel oxide , 2010 .

[26]  L. Gao,et al.  From Three‐Dimensional Flower‐Like α‐Ni(OH)2 Nanostructures to Hierarchical Porous NiO Nanoflowers: Microwave‐Assisted Fabrication and Supercapacitor Properties , 2010 .

[27]  Hailiang Wang,et al.  TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials , 2010, 1008.2234.

[28]  X. Lou,et al.  Shape-controlled synthesis of porous Co3O4 nanostructures for application in supercapacitors , 2010 .

[29]  L. Nazar,et al.  Direct synthesis of electroactive mesoporous hydrous crystalline RuO2 templated by a cationic surfactant , 2010 .

[30]  G. R. Rao,et al.  Tuning of Capacitance Behavior of NiO Using Anionic, Cationic, and Nonionic Surfactants by Hydrothermal Synthesis , 2010 .

[31]  F. Wei,et al.  Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance , 2010 .

[32]  R. Ruoff,et al.  The chemistry of graphene oxide. , 2010, Chemical Society reviews.

[33]  Jie Cheng,et al.  Carbon nanotube/MnO2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities , 2009 .

[34]  Huafeng Yang,et al.  One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors , 2009, Nanotechnology.

[35]  Xiaogang Zhang,et al.  Nickel oxide coated on ultrasonically pretreated carbon nanotubes for supercapacitor , 2009 .

[36]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[37]  L. Kong,et al.  Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors. , 2008, Chemical communications.

[38]  Jin-Song Hu,et al.  Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices , 2008 .

[39]  Xiao‐Qing Yang,et al.  Pseudocapacitive properties of electrochemically prepared nickel oxides on 3-dimensional carbon nanotube film substrates , 2008 .

[40]  Ran Liu,et al.  MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. , 2008, Journal of the American Chemical Society.

[41]  P. Taberna,et al.  Relation between the ion size and pore size for an electric double-layer capacitor. , 2008, Journal of the American Chemical Society.

[42]  Mo Song,et al.  Preparation of fully exfoliated graphite oxide nanoplatelets in organic solvents , 2007 .

[43]  Wei Zhang,et al.  Charge-discharge process of MnO2 supercapacitor , 2007 .

[44]  Mao-wen Xu,et al.  Mesoporous amorphous MnO2 as electrode material for supercapacitor , 2007 .

[45]  Mathieu Toupin,et al.  Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors , 2006 .

[46]  Y. Qian,et al.  High-Yield Synthesis of NiO Nanoplatelets and Their Excellent Electrochemical Performance , 2006 .

[47]  Yongyao Xia,et al.  Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15 , 2006 .

[48]  I. Dékány,et al.  DRIFT study of deuterium-exchanged graphite oxide , 2005 .

[49]  T. Lim,et al.  Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors. , 2005, Small.

[50]  K. Nam,et al.  A Study of the Preparation of NiO x Electrode via Electrochemical Route for Supercapacitor Applications and Their Charge Storage Mechanism , 2002 .

[51]  M. Mastragostino,et al.  Carbon-Poly(3-methylthiophene) Hybrid Supercapacitors , 2001 .

[52]  Il-Hwan Kim,et al.  Ruthenium Oxide Thin Film Electrodes for Supercapacitors , 2001 .

[53]  H. Matsumoto,et al.  Improvement in electrochromic stability of electrodeposited nickel hydroxide thin film , 1997 .

[54]  Marc A. Anderson,et al.  Porous Nickel Oxide/Nickel Films for Electrochemical Capacitors , 1996 .

[55]  R. Armstrong,et al.  Behaviour of nickel hydroxide electrodes after prolonged potential float , 1991 .