Secrecy Capacity Scaling in Large Cooperative Wireless Networks

We investigate <italic>large</italic> wireless networks subject to security constraints. In contrast to point-to-point, interference-limited communications considered in prior works, we propose active cooperative relaying-based schemes. We consider a network with <inline-formula> <tex-math notation="LaTeX">$n_{l}$ </tex-math></inline-formula> legitimate nodes, <inline-formula> <tex-math notation="LaTeX">$n_{e}$ </tex-math></inline-formula> eavesdroppers, and path loss exponent <inline-formula> <tex-math notation="LaTeX">$\alpha \geq 2$ </tex-math></inline-formula>. As long as <inline-formula> <tex-math notation="LaTeX">$n_{e}^{2}\big (\log (n_{e})\big )^{\gamma }=o(n_{l})$ </tex-math></inline-formula>, for some positive <inline-formula> <tex-math notation="LaTeX">$\gamma $ </tex-math></inline-formula>, we show that one can obtain unbounded secure aggregate rate. This means zero-cost secure communication, given fixed total power constraint for the entire network. We achieve this result through: 1) the source using Wyner randomized encoder and a <italic>serial (multi-stage)</italic> block Markov scheme, to cooperate with the relays and 2) the relays acting as a virtual multi-antenna to apply beamforming against the eavesdroppers. Our simpler <italic>parallel (two-stage)</italic> relaying scheme can achieve the same unbounded secure aggregate rate when <inline-formula> <tex-math notation="LaTeX">$n_{e}^{\alpha /{2}+1}\big (\log (n_{e})\big )^{\gamma +\delta ({\alpha }/{2}+1)}=o(n_{l})$ </tex-math></inline-formula> holds, for some positive <inline-formula> <tex-math notation="LaTeX">$\gamma ,\delta $ </tex-math></inline-formula>. Finally, we study the improvement (to the detriment of legitimate nodes) that the eavesdroppers achieve in terms of the information leakage rate in a large <italic>cooperative</italic> network in the case of <italic>collusion</italic>. We show that again the zero-cost secure communication is possible, if <inline-formula> <tex-math notation="LaTeX">$n_{e}^{(2+{2}/{\alpha })}\big (\log n_{e}\big )^{\gamma }=o(n_{l})$ </tex-math></inline-formula> holds, for some positive <inline-formula> <tex-math notation="LaTeX">$\gamma $ </tex-math></inline-formula>; that is, in the case of collusion slightly fewer eavesdroppers can be tolerated compared with the non-colluding case.

[1]  Roy D. Yates,et al.  Discrete Memoryless Interference and Broadcast Channels With Confidential Messages: Secrecy Rate Regions , 2007, IEEE Transactions on Information Theory.

[2]  R. Negi,et al.  Secret communication using artificial noise , 2005, VTC-2005-Fall. 2005 IEEE 62nd Vehicular Technology Conference, 2005..

[3]  Xinbing Wang,et al.  Impact of secrecy on capacity in large-scale wireless networks , 2012, 2012 Proceedings IEEE INFOCOM.

[4]  Yasutada Oohama,et al.  Capacity Theorems for Relay Channels with Confidential Messages , 2007, 2007 IEEE International Symposium on Information Theory.

[5]  Sennur Ulukus,et al.  Multi-Receiver Wiretap Channel With Public and Confidential Messages , 2013, IEEE Transactions on Information Theory.

[6]  Elza Erkip,et al.  The Relay Channel with a Wire-tapper , 2007, 2007 41st Annual Conference on Information Sciences and Systems.

[7]  Mohamed-Slim Alouini,et al.  Secure Diversity-Multiplexing Tradeoff of Zero-Forcing Transmit Scheme at Finite-SNR , 2011, IEEE Transactions on Communications.

[8]  Panagiotis Papadimitratos,et al.  Constrained Colluding Eavesdroppers: An Information-Theoretic Model , 2013, ArXiv.

[9]  Panagiotis Papadimitratos,et al.  Colluding eavesdroppers in large cooperative wireless networks , 2014, 2014 Iran Workshop on Communication and Information Theory (IWCIT).

[10]  Donald F. Towsley,et al.  Security-capacity trade-off in large wireless networks using keyless secrecy , 2010, MobiHoc '10.

[11]  Ayfer Özgür,et al.  Hierarchical Cooperation Achieves Optimal Capacity Scaling in Ad Hoc Networks , 2006, IEEE Transactions on Information Theory.

[12]  Frédérique E. Oggier,et al.  The secrecy capacity of the MIMO wiretap channel , 2007, 2008 IEEE International Symposium on Information Theory.

[13]  Moe Z. Win,et al.  Secure Communication in Stochastic Wireless Networks—Part II: Maximum Rate and Collusion , 2012, IEEE Transactions on Information Forensics and Security.

[14]  Abbas El Gamal,et al.  Network Information Theory , 2021, 2021 IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT).

[15]  Gregory W. Wornell,et al.  Secure Transmission With Multiple Antennas I: The MISOME Wiretap Channel , 2010, IEEE Transactions on Information Theory.

[16]  Gregory W. Wornell,et al.  Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks , 2003, IEEE Trans. Inf. Theory.

[17]  Moe Z. Win,et al.  Wireless physical-layer security: The case of colluding eavesdroppers , 2009, 2009 IEEE International Symposium on Information Theory.

[18]  Onur Ozan Koyluoglu,et al.  On Secrecy Capacity Scaling in Wireless Networks , 2012, IEEE Transactions on Information Theory.

[19]  Panganamala Ramana Kumar,et al.  A network information theory for wireless communication: scaling laws and optimal operation , 2004, IEEE Transactions on Information Theory.

[20]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[21]  Panganamala Ramana Kumar,et al.  An achievable rate for the multiple-level relay channel , 2005, IEEE Transactions on Information Theory.

[22]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[23]  Raef Bassily,et al.  Secure communication in multiple relay networks through decode-and-forward strategies , 2012, Journal of Communications and Networks.

[24]  Imre Csiszár,et al.  Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.

[25]  Abbas El Gamal,et al.  Capacity theorems for the relay channel , 1979, IEEE Trans. Inf. Theory.

[26]  Nan Liu,et al.  Towards the Secrecy Capacity of the Gaussian MIMO Wire-Tap Channel: The 2-2-1 Channel , 2007, IEEE Transactions on Information Theory.

[27]  Raef Bassily,et al.  Deaf Cooperation and Relay Selection Strategies for Secure Communication in Multiple Relay Networks , 2013, IEEE Transactions on Signal Processing.

[28]  Thomas M. Cover,et al.  Network Information Theory , 2001 .

[29]  Hsiao-Chun Wu,et al.  Physical layer security in wireless networks: a tutorial , 2011, IEEE Wireless Communications.

[30]  H. Vincent Poor,et al.  Secure Communications Over Wireless Broadcast Networks: Stability and Utility Maximization , 2011, IEEE Transactions on Information Forensics and Security.

[31]  Zhu Han,et al.  Secure wireless communications via cooperation , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[32]  Donald F. Towsley,et al.  Secret communication in large wireless networks without eavesdropper location information , 2012, 2012 Proceedings IEEE INFOCOM.

[33]  Hesham El Gamal,et al.  The Relay–Eavesdropper Channel: Cooperation for Secrecy , 2006, IEEE Transactions on Information Theory.

[34]  Elza Erkip,et al.  Diversity-multiplexing tradeoff for the multiple-antenna wire-tap channel , 2008, 2008 42nd Annual Conference on Information Sciences and Systems.

[35]  J. Nicholas Laneman,et al.  Information-spectrum methods for information-theoretic security , 2009, 2009 Information Theory and Applications Workshop.

[36]  Michael Gastpar,et al.  Cooperative strategies and capacity theorems for relay networks , 2005, IEEE Transactions on Information Theory.

[37]  Massimo Franceschetti,et al.  Closing the Gap in the Capacity of Wireless Networks Via Percolation Theory , 2007, IEEE Transactions on Information Theory.

[38]  Panganamala Ramana Kumar,et al.  RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN , 2001 .

[39]  Mamoru Sawahashi,et al.  Coordinated multipoint transmission/reception techniques for LTE-advanced [Coordinated and Distributed MIMO] , 2010, IEEE Wireless Communications.

[40]  Gregory W. Wornell,et al.  Secure Transmission With Multiple Antennas—Part II: The MIMOME Wiretap Channel , 2010, IEEE Transactions on Information Theory.

[41]  Donald F. Towsley,et al.  Physical layer security from inter-session interference in large wireless networks , 2012, 2012 Proceedings IEEE INFOCOM.

[42]  Abbas El Gamal,et al.  Three-Receiver Broadcast Channels With Common and Confidential Messages , 2012, IEEE Transactions on Information Theory.

[43]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .