X-Ray Lighthouses of the High-Redshift Universe. II. Further Snapshot Observations of the Most Luminous z≳4 Quasars with Chandra

We report on Chandra observations of a sample of 11 optically luminous (MB < -28.5) quasars at z = 3.96–4.55 selected from the Palomar Digital Sky Survey and the Automatic Plate Measuring Facility Survey. These are among the most luminous z ≳ 4 quasars known and hence represent ideal witnesses of the end of the "dark age." Nine quasars are detected by Chandra, with ≈2–57 counts in the observed 0.5–8 keV band. These detections increase the number of X-ray-detected AGNs at z ≳ 4 to ≈90; overall, Chandra has detected ≈85% of the high-redshift quasars observed with snapshot (few kilosecond) observations. PSS 1506+5220, one of the two X-ray-undetected quasars, displays a number of notable features in its rest-frame ultraviolet spectrum, the most prominent being broad, deep Si IV and C IV absorption lines. The average optical-to-X-ray spectral index for the present sample (⟨αox⟩ = -1.88 ± 0.05) is steeper than that typically found for z ≳ 4 quasars but consistent with the expected value from the known dependence of this spectral index on quasar luminosity. We present joint X-ray spectral fitting for a sample of 48 radio-quiet quasars in the redshift range 3.99–6.28 for which Chandra observations are available. The X-ray spectrum (≈870 counts) is well parameterized by a power law with Γ = 1.93 in the rest-frame ≈2–40 keV band, and a tight upper limit of NH ≈ 5 × 1021 cm-2 is obtained on any average intrinsic X-ray absorption. There is no indication of any significant evolution in the X-ray properties of quasars between redshifts 0 and 6, suggesting that the physical processes of accretion onto massive black holes have not changed over the bulk of cosmic time.

[1]  The XMM-Newton view of PG quasars - I. X-ray continuum and absorption , 2004, astro-ph/0411051.

[2]  D. A. Schwartz,et al.  Chandra Measurement of the X-Ray Spectrum of a Quasar at z = 5.99 , 2004, astro-ph/0410124.

[3]  W. Brandt,et al.  The Fall of Active Galactic Nuclei and the Rise of Star-forming Galaxies: A Close Look at the Chandra Deep Field X-Ray Number Counts , 2004, astro-ph/0408001.

[4]  R. McMahon,et al.  The X-Ray Spectrum of the z = 6.30 QSO SDSS J1030+0524 , 2004, astro-ph/0406561.

[5]  W. Brandt,et al.  Chandra Observations of Radio-Loud Quasars at z > 4: X-Rays from the Radio Beacons of the Early Universe , 2004, astro-ph/0404543.

[6]  M. Eracleous,et al.  A Study of Quasar Evolution in the X-Ray Band with the Aid of Gravitational Lensing , 2004, astro-ph/0401013.

[7]  F. Mannucci,et al.  Extreme gas properties in the most distant quasars , 2003, astro-ph/0312402.

[8]  D. Grupe,et al.  XMM-Newton Observations of Two High-Redshift Quasars: RX J1028-0844 and BR 0351-1034 , 2003, astro-ph/0310188.

[9]  P. O’Brien,et al.  An X‐ray Baldwin effect for the narrow Fe Kα lines observed in active galactic nuclei , 2003, astro-ph/0309394.

[10]  F. Castander,et al.  An X-Ray-selected Active Galactic Nucleus at z = 4.6 Discovered by the CYDER Survey , 2003, astro-ph/0311356.

[11]  F. Castander,et al.  High-Redshift X-Ray-Selected Quasars: CXOCY J125304.0−090737 Joins the Club , 2003 .

[12]  Mark W. Bautz,et al.  Advanced CCD imaging spectrometer (ACIS) instrument on the Chandra X-ray Observatory , 2003, SPIE Astronomical Telescopes + Instrumentation.

[13]  Tucson,et al.  Chandra and XMM-Newton Observations of the First Quasars: X-Rays from the Age of Cosmic Enlightenment , 2003, astro-ph/0302558.

[14]  J. Shields,et al.  Quasar Elemental Abundances at High Redshifts , 2003, astro-ph/0302494.

[15]  M. F. Physik,et al.  XMM-Newton observations of four high-z quasars , 2003, astro-ph/0302421.

[16]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[17]  P. O’Brien,et al.  Serendipitous active galactic nuclei in the XMM—Newton fields of Markarian 205 and QSO 0130−403 , 2002, astro-ph/0210140.

[18]  J. Shields,et al.  Chandra Survey of Radio-quiet, High-Redshift Quasars , 2002, astro-ph/0204462.

[19]  M. Dietrich,et al.  Elemental Abundances in the Broad Emission Line Region of Quasars at Redshifts larger than 4 , 2002 .

[20]  W. Brandt,et al.  X-Ray Emission from Radio-Quiet Quasars in the Sloan Digital Sky Survey Early Data Release: The αox Dependence upon Ultraviolet Luminosity , 2002, astro-ph/0211125.

[21]  Astronomy,et al.  X-Ray Lighthouses of the High-Redshift Universe: Probing the Most Luminous z > 4 Palomar Digital Sky Survey Quasars with Chandra , 2002, astro-ph/0210475.

[22]  W. Brandt,et al.  CHANDRA Detects Relativistic Broad Absorption Lines from APM 08279+5255 , 2002, astro-ph/0207196.

[23]  Z. Haiman,et al.  Constraining the Redshift z ~ 6 Quasar Luminosity Function Using Gravitational Lensing , 2002, astro-ph/0206441.

[24]  J. Gunn,et al.  J-Band Spectroscopy of the z = 5.74 Broad Absorption Line Quasar SDSSp J104433.04–012502.2 , 2001 .

[25]  W. Brandt,et al.  X-Ray Spectroscopy of Quasi-Stellar Objects with Broad Ultraviolet Absorption Lines , 2001, astro-ph/0110579.

[26]  D. Lamb,et al.  A Wavelet-Based Algorithm for the Spatial Analysis of Poisson Data , 2001, astro-ph/0108429.

[27]  Astrophysics,et al.  Exploratory Chandra Observations of the Highest-Redshift Quasars: X-Rays from the Dawn of the Modern Universe , 2001, astro-ph/0108001.

[28]  R. G. McMahon,et al.  A 1.2 mm MAMBO/IRAM-30 m survey of dust emission from the highest redshift PSS quasars , 2001, astro-ph/0107005.

[29]  R. McMahon,et al.  Radio Observations of Infrared-Luminous High-Redshift Quasi-Stellar Objects , 2001, astro-ph/0106408.

[30]  P. Green,et al.  A Chandra Survey of Broad Absorption Line Quasars , 2001, astro-ph/0105258.

[31]  E. al.,et al.  Composite Quasar Spectra from the Sloan Digital Sky Survey , 2001, astro-ph/0105231.

[32]  F. Mannucci,et al.  Discovery of strong CIV absorption in the highest redshift quasar , 2001, astro-ph/0104147.

[33]  I. Hook,et al.  Absorption Systems in the Spectra of 66 z ≳ 4 Quasars , 2001, astro-ph/0101179.

[34]  I. Hook,et al.  The Second APM UKST Colour Survey for z > 4 quasars , 2000, astro-ph/0012446.

[35]  W. Brandt,et al.  An XMM-Newton Detection of the z = 5.80 X-Ray-Weak Quasar SDSSp J104433.04-012502.2 , 2000, astro-ph/0010328.

[36]  J. Turner X‐ray spectra of a large sample of quasars with ASCA , 2000, astro-ph/0003080.

[37]  W. Brandt,et al.  The X-Ray Properties of z > 4 Quasars , 2000, astro-ph/0001299.

[38]  K. Nandra,et al.  X-Ray Observations of Optically Selected, Radio-quiet Quasars. I. The ASCA Results , 1999, astro-ph/9910218.

[39]  W. N. Brandt,et al.  On the Nature of Soft X-Ray Weak Quasi-stellar Objects , 1999, astro-ph/9908016.

[40]  G. Ferland,et al.  Elemental Abundances in Quasistellar Objects: Star Formation and Galactic Nuclear Evolution at High Redshifts , 1999, astro-ph/9904223.

[41]  E. O. Smith,et al.  After the dark ages : when galaxies were young (the universe at 2 < z < 5) : ninth astrophysics conference, College Park, Maryland October 1998 , 1999 .

[42]  R. Nichol,et al.  High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data , 1999, astro-ph/0103228.

[43]  Niall Gaffney,et al.  Early performance and present status of the Hobby-Eberly Telescope , 1998, Astronomical Telescopes and Instrumentation.

[44]  Gary J. Hill,et al.  Hobby-Eberly Telescope low-resolution spectrograph: optical design , 1998, Astronomical Telescopes and Instrumentation.

[45]  Phillip J. MacQueen,et al.  Hobby-Eberly Telescope low-resolution spectrograph , 1998, Astronomical Telescopes and Instrumentation.

[46]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[47]  D. Schneider,et al.  Discovery of an X-Ray-selected Quasar with a Redshift of 4.45 , 1998 .

[48]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[49]  K. Nandra,et al.  On the Dependence of the Iron K-Line Profiles with Luminosity in Active Galactic Nuclei , 1997, astro-ph/9708030.

[50]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[51]  M. Irwin,et al.  APM z>4 QSO Survey: Spectra and Intervening Absorption Systems , 1996, astro-ph/9604021.

[52]  Y. Avni,et al.  The Underlying Distribution of Optical to X-Ray Spectral Index for Quasars in the Presence of Detection Thresholds , 1995 .

[53]  Richard L. White,et al.  The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .

[54]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[55]  B. Wilkes,et al.  Absorption in X-ray spectra of high-redshift quasars , 1994 .

[56]  Y. Taniguchi,et al.  The X-Ray Baldwin Effect , 1993 .

[57]  D. Burrows,et al.  Determination of Confidence Limits for Experiments with Low Numbers of Counts , 1991 .

[58]  D. Schade,et al.  The Space Distribution of Quasars , 1990 .

[59]  J. Dickey,et al.  H I in the Galaxy , 1990 .

[60]  Maarten Schmidt,et al.  VLA observations of objects in the Palomar Bright Quasar Survey , 1989 .

[61]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[62]  N. Gehrels Confidence limits for small numbers of events in astrophysical data , 1986 .

[63]  Richard F. Green,et al.  Quasar evolution derived from the Palomar bright quasar survey and other complete quasar surveys. , 1983 .

[64]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[65]  W. Cash,et al.  Parameter estimation in astronomy through application of the likelihood ratio. [satellite data analysis techniques , 1979 .

[66]  Y. Avni,et al.  Energy spectra of X-ray clusters of galaxies , 1976 .