Functional clustering by Bayesian wavelet methods

Summary.  We propose a nonparametric Bayes wavelet model for clustering of functional data. The wavelet‐based methodology is aimed at the resolution of generic global and local features during clustering and is suitable for clustering high dimensional data. Based on the Dirichlet process, the nonparametric Bayes model extends the scope of traditional Bayes wavelet methods to functional clustering and allows the elicitation of prior belief about the regularity of the functions and the number of clusters by suitably mixing the Dirichlet processes. Posterior inference is carried out by Gibbs sampling with conjugate priors, which makes the computation straightforward. We use simulated as well as real data sets to illustrate the suitability of the approach over other alternatives.

[1]  D. Blackwell,et al.  Ferguson Distributions Via Polya Urn Schemes , 1973 .

[2]  R. M. Korwar,et al.  Contributions to the Theory of Dirichlet Processes , 1973 .

[3]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[4]  C. Antoniak Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .

[5]  K. Chaloner,et al.  A Bayesian approach to outlier detection and residual analysis , 1988 .

[6]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[7]  A. Raftery,et al.  Model-based Gaussian and non-Gaussian clustering , 1993 .

[8]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[9]  Katherine Campbell,et al.  Introduction to disjunctive kriging and non-linear geostatistics , 1994 .

[10]  W. Sweldens The Lifting Scheme: A Custom - Design Construction of Biorthogonal Wavelets "Industrial Mathematics , 1996 .

[11]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[12]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[13]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[14]  S. MacEachern,et al.  A semiparametric Bayesian model for randomised block designs , 1996 .

[15]  C. Tilke Introduction to Disjunctive Kriging and Non-Linear Geostatistics , 1997 .

[16]  B. Vidakovic Nonlinear wavelet shrinkage with Bayes rules and Bayes factors , 1998 .

[17]  Arne Kovac,et al.  Extending the Scope of Wavelet Regression Methods by Coefficient-Dependent Thresholding , 2000 .

[18]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[19]  B. Silverman,et al.  Wavelet thresholding via a Bayesian approach , 1998 .

[20]  M. Clyde,et al.  Multiple shrinkage and subset selection in wavelets , 1998 .

[21]  C. Bretherton,et al.  Validation of Mesoscale Precipitation in the NCEP Reanalysis Using a New Gridcell Dataset for the Northwestern United States , 2000 .

[22]  M. Clyde,et al.  Flexible empirical Bayes estimation for wavelets , 2000 .

[23]  John J. Wyrick,et al.  Genome-wide location and function of DNA binding proteins. , 2000, Science.

[24]  Robert R. Klevecz,et al.  Dynamic architecture of the yeast cell cycle uncovered by wavelet decomposition of expression microarray data , 2000, Functional & Integrative Genomics.

[25]  Brani Vidakovic,et al.  On Non-Equally Spaced Wavelet Regression , 2001 .

[26]  Adrian E. Raftery,et al.  Model-based clustering and data transformations for gene expression data , 2001, Bioinform..

[27]  Mario Medvedovic,et al.  Bayesian infinite mixture model based clustering of gene expression profiles , 2002, Bioinform..

[28]  Catherine A. Sugar,et al.  Clustering for Sparsely Sampled Functional Data , 2003 .

[29]  F. Quintana,et al.  Bayesian clustering and product partition models , 2003 .

[30]  C. F. Sirmans,et al.  Spatial Modeling With Spatially Varying Coefficient Processes , 2003, Journal of the American Statistical Association.

[31]  Chuan Zhou,et al.  Modelling Gene Expression Data over Time: Curve Clustering with Informative Prior Distributions , 2003 .

[32]  S. Chib,et al.  Marginal Likelihood and Bayes Factors for Dirichlet Process Mixture Models , 2003 .

[33]  Brani Vidakovic,et al.  Wavelet Bayesian Block Shrinkage via Mixtures of Normal-Inverse Gamma Priors , 2004 .

[34]  Sudipto Banerjee,et al.  On Geodetic Distance Computations in Spatial Modeling , 2005, Biometrics.