Harvesting ambient wind energy with an inverted piezoelectric flag

The paper describes an experimental study of wind energy harvesting by self-sustained oscillations (flutter) of a flexible piezoelectric membrane fixed in a novel orientation called the “inverted flag”. We conducted parametric studies to evaluate the influence of geometrical parameters of the flag on the flapping behavior and the resulting energy output. We have demonstrated the capability for inducing aero-elastic flutter in a desired wind velocity range by simply tuning the geometrical parameters of the flag. A peak electrical power of ∼5.0mW/cm3 occurred at a wind velocity of 9m/s. Our devices showed sustained power generation (∼0.4mW/cm3) even in low-wind speed regimes (∼3.5m/s) suitable for ambient wind energy harvesting. We also conducted outdoor experiments and harvested ambient wind energy to power a temperature sensor without employing a battery for energy storage. Moreover, a self-aligning mechanism to compensate for changing wind directions was incorporated and resulted in an increase in the temperature sensor data output by more than 20 times. These findings open new opportunities for self-powered devices using ambient wind energy with fluctuating conditions and low speed regimes.

[1]  Michael W. Shafer,et al.  Erratum: Designing maximum power output into piezoelectric energy harvesters , 2012 .

[2]  Lihong Zhang,et al.  Portable Wind Energy Harvesters for Low-Power Applications: A Survey , 2016, Sensors.

[3]  Yifan Xia Energy harvesting by piezoelectric flags , 2015 .

[4]  Paolo Dario,et al.  Biomedical applications of piezoelectric and pyroelectric polymers , 1983 .

[5]  Yang Rao,et al.  A Wind Energy Powered Wireless Temperature Sensor Node , 2015, Sensors.

[6]  S. Evoy,et al.  A review of piezoelectric polymers as functional materials for electromechanical transducers , 2014 .

[7]  Hyung Jin Sung,et al.  Flapping dynamics of an inverted flag in a uniform flow , 2015 .

[8]  Daochun Li,et al.  Energy harvesting by means of flow-induced vibrations on aerospace vehicles , 2016 .

[9]  Ali Bakhshandeh Rostami,et al.  Renewable energy harvesting by vortex-induced motions: Review and benchmarking of technologies , 2017 .

[10]  Yifan Xia,et al.  Resonance-induced enhancement of the energy harvesting performance of piezoelectric flags , 2015, 1512.05532.

[11]  Bhusana Premanode,et al.  A novel, low power biosensor for real time monitoring of creatinine and urea in peritoneal dialysis , 2006 .

[12]  Xi-Yun Lu,et al.  Dynamics of an inverted flexible plate in a uniform flow , 2015 .

[13]  Abdessattar Abdelkefi,et al.  Aeroelastic energy harvesting: A review , 2016 .

[14]  Ying Bai,et al.  An ultra-wearable, wireless, low power ECG monitoring system , 2006, 2006 IEEE Biomedical Circuits and Systems Conference.

[15]  Robert D. Nowak,et al.  Backcasting: adaptive sampling for sensor networks , 2004, Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004.

[16]  Yuelong Yu,et al.  Energy harvesting with two parallel pinned piezoelectric membranes in fluid flow , 2016 .

[17]  R. Mittal,et al.  Energy harvesting by flow-induced flutter in a simple model of an inverted piezoelectric flag , 2016, Journal of Fluid Mechanics.

[18]  Hyung-Jo Jung,et al.  The experimental validation of a new energy harvesting system based on the wake galloping phenomenon , 2011 .

[19]  Daniel J. Inman,et al.  Dual cantilever flutter: Experimentally validated lumped parameter modeling and numerical characterization , 2016 .

[20]  John E. Sader,et al.  Stability of slender inverted flags and rods in uniform steady flow , 2016, Journal of Fluid Mechanics.

[21]  D. Inman,et al.  A Review of Power Harvesting from Vibration using Piezoelectric Materials , 2004 .

[22]  N. Elvin,et al.  Energy Harvesting from Highly Unsteady Fluid Flows using Piezoelectric Materials , 2010 .

[23]  Pierre Ueberschlag,et al.  PVDF piezoelectric polymer , 2001 .

[24]  S. Alben,et al.  Flapping states of a flag in an inviscid fluid: bistability and the transition to chaos. , 2008, Physical review letters.

[25]  Sanjib Kumar Panda,et al.  Optimized Wind Energy Harvesting System Using Resistance Emulator and Active Rectifier for Wireless Sensor Nodes , 2011, IEEE Transactions on Power Electronics.

[26]  Sanjib Kumar Panda,et al.  Self-Autonomous Wireless Sensor Nodes With Wind Energy Harvesting for Remote Sensing of Wind-Driven Wildfire Spread , 2011, IEEE Transactions on Instrumentation and Measurement.

[27]  Zhong Lin Wang,et al.  Triboelectric nanogenerators as self-powered active sensors , 2015 .

[28]  Simon Watkins,et al.  A parametric study of wind-induced flutter of piezoelectric patches for energy harvesting , 2013 .

[29]  John E. Sader,et al.  THE EFFECT OF ASPECT RATIO AND ANGLE OF ATTACK ON THE TRANSITION REGIONS OF THE INVERTED FLAG INSTABILITY , 2014 .

[30]  Lion Hirth,et al.  The benefits of flexibility: The value of wind energy with hydropower , 2016 .

[31]  J. S. Partridge,et al.  An analysis of the energy flow and energy potential from human energy harvesting with a focus on walking , 2016 .

[32]  D. Inman,et al.  Resistive Impedance Matching Circuit for Piezoelectric Energy Harvesting , 2010 .

[33]  Daniel J. Inman,et al.  Artificial piezoelectric grass for energy harvesting from turbulence-induced vibration , 2012 .

[34]  Yong Shi,et al.  Piezoelectric Leaf Generator for Wind Energy Harvest , 2014 .

[35]  Boyu Fan,et al.  Large-amplitude flapping of an inverted flag in a uniform steady flow – a vortex-induced vibration , 2016, Journal of Fluid Mechanics.

[36]  Henry A. Sodano,et al.  A review of power harvesting using piezoelectric materials (2003–2006) , 2007 .

[37]  Na Wang,et al.  A frequency and bandwidth tunable piezoelectric vibration energy harvester using multiple nonlinear techniques , 2017 .

[38]  H. Sung,et al.  Three-dimensional simulation of a flapping flag in a uniform flow , 2010, Journal of Fluid Mechanics.

[39]  Bruno Scrosati,et al.  Power sources for portable electronics and hybrid cars: lithium batteries and fuel cells. , 2005, Chemical record.

[40]  V. Ferrari,et al.  Thermal energy harvesting through pyroelectricity , 2010 .

[41]  Simon Watkins,et al.  Downstream flow structures of a fluttering piezoelectric energy harvester , 2013 .

[42]  Amen Agbossou,et al.  On thermoelectric and pyroelectric energy harvesting , 2009 .

[43]  Simon Watkins,et al.  The Effect of the Configuration of the Amplification Device on the Power Output of a Piezoelectric Strip , 2012 .

[44]  Ying Liu,et al.  Nanocomposite Generators: Flexible Nanocomposite Generator Made of BaTiO3 Nanoparticles and Graphitic Carbons (Adv. Mater. 22/2012) , 2012 .

[45]  T. O'Donnell,et al.  Energy scavenging for long-term deployable wireless sensor networks. , 2008, Talanta.

[46]  Earl H. Dowell,et al.  Power extraction from aeroelastic limit cycle oscillations , 2011 .

[47]  Yaowen Yang,et al.  Toward Small-Scale Wind Energy Harvesting: Design, Enhancement, Performance Comparison, and Applicability , 2017 .

[48]  Yuyu Zhou,et al.  The impacts of wind technology advancement on future global energy , 2016 .

[49]  Jun Zhang,et al.  Flapping and Bending Bodies Interacting with Fluid Flows , 2011 .

[50]  J.A.R. Azevedo,et al.  Small scale wind energy harvesting with maximum power tracking , 2015 .

[51]  Anantha P. Chandrakasan,et al.  Low Power Digital CMOS Design , 1995 .

[52]  J McCarthy Energy capture from ambient flows using piezoelectric flutter harvesters , 2014 .

[53]  Liya Zhao,et al.  Small-scale wind energy harvesting using piezoelectric materials , 2015 .

[54]  Olivier Doare,et al.  Piezoelectric coupling in energy-harvesting fluttering flexible plates: linear stability analysis and conversion efficiency , 2011 .

[55]  Rajeev K. Jaiman,et al.  Self-induced flapping dynamics of a flexible inverted foil in a uniform flow , 2015, Journal of Fluid Mechanics.

[56]  Xue Feng,et al.  Ultra-flexible Piezoelectric Devices Integrated with Heart to Harvest the Biomechanical Energy , 2015, Scientific Reports.

[57]  D. Yue,et al.  Flapping dynamics of a flag in a uniform stream , 2007, Journal of Fluid Mechanics.

[58]  Sabu John,et al.  Piezoelectric Energy Harvesting from Wind Using Coupled Bending-Torsional Vibrations , 2014 .

[59]  Fotis Sotiropoulos,et al.  A numerical approach for simulating fluid structure interaction of flexible thin shells undergoing arbitrarily large deformations in complex domains , 2015, J. Comput. Phys..

[60]  John A. Rogers,et al.  Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation , 2016 .

[61]  Hod Lipson,et al.  Ambient wind energy harvesting using cross-flow fluttering , 2011 .

[62]  Matthew Bryant,et al.  Aeroelastic flutter energy harvester design: the sensitivity of the driving instability to system parameters , 2011 .

[63]  Tao Wang,et al.  Flutter Phenomenon in Flow Driven Energy Harvester–A Unified Theoretical Model for “Stiff” and “Flexible” Materials , 2016, Scientific Reports.

[64]  Chang Ming Li,et al.  Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body , 2016 .

[65]  Anthony Marin,et al.  Micro Wind Turbine for Powering Wireless Sensor Nodes , 2015 .

[66]  Rajeev K. Jaiman,et al.  Energy Harvesting Using Flapping Dynamics of Piezoelectric Inverted Flexible Foil , 2015 .

[67]  Olivier Doaré,et al.  Energy harvesting efficiency of piezoelectric flags in axial flows , 2013, Journal of Fluid Mechanics.

[68]  Michael Grätzel,et al.  Solar energy conversion by dye-sensitized photovoltaic cells. , 2005, Inorganic chemistry.

[69]  Wenming Yang,et al.  Development of micro power generators – A review , 2011 .

[70]  Olivier Doaré,et al.  Fluid-solid-electric energy transport along piezoelectric flags , 2016 .

[71]  Xudong Wang,et al.  Piezoelectric nanogenerators—Harvesting ambient mechanical energy at the nanometer scale , 2012 .

[72]  Zhong Lin Wang,et al.  Progress in nanogenerators for portable electronics , 2012 .

[73]  Joseph A. Paradiso,et al.  Energy scavenging for mobile and wireless electronics , 2005, IEEE Pervasive Computing.

[74]  Matthew Bryant,et al.  Modeling and Testing of a Novel Aeroelastic Flutter Energy Harvester , 2011 .

[75]  John T W Yeow,et al.  Conductive polymer-based sensors for biomedical applications. , 2011, Biosensors & bioelectronics.

[76]  Hod Lipson,et al.  Vertical-Stalk Flapping-Leaf Generator for Wind Energy Harvesting , 2009, Volume 2: Multifunctional Materials; Enabling Technologies and Integrated System Design; Structural Health Monitoring/NDE; Bio-Inspired Smart Materials and Structures.

[77]  Yuelong Yu,et al.  Flapping dynamics of a piezoelectric membrane behind a circular cylinder , 2015 .

[78]  Yifan Xia,et al.  Fluid-Solid-Electric Lock-In of Energy-Harvesting Piezoelectric Flags , 2014, 1501.02191.

[79]  Morteza Gharib,et al.  Flapping dynamics of an inverted flag , 2013, Journal of Fluid Mechanics.

[80]  Lixi Huang,et al.  Flutter of Cantilevered Plates in Axial Flow , 1995 .

[81]  M. McCloskey,et al.  Wind Energy Conversion by Plant-Inspired Designs , 2017, PloS one.

[82]  Antonio Iera,et al.  The Internet of Things: A survey , 2010, Comput. Networks.

[83]  Yaowen Yang,et al.  Comparative study of tip cross-sections for efficient galloping energy harvesting , 2013 .

[84]  Minoru Toda,et al.  High Frequency Length Mode PVDF Behavior over Temperature , 2008 .

[85]  Long Lin,et al.  Super-Flexible Nanogenerator for Energy Harvesting from Gentle Wind and as an Active Deformation Sensor , 2013 .

[86]  Davide Brunelli A High-Efficiency Wind Energy Harvester for Autonomous Embedded Systems , 2016, Sensors.

[87]  Deniz Tolga Akcabay,et al.  Hydroelastic response and energy harvesting potential of flexible piezoelectric beams in viscous flow , 2012 .

[88]  C. Eloy,et al.  Aeroelastic instability of cantilevered flexible plates in uniform flow , 2008, Journal of Fluid Mechanics.

[89]  J. Edmison,et al.  Using piezoelectric materials for wearable electronic textiles , 2002, Proceedings. Sixth International Symposium on Wearable Computers,.

[90]  L. Mahadevan,et al.  Fluid-flow-induced flutter of a flag. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[91]  Ephrahim Garcia,et al.  Wake synergies enhance performance in aeroelastic vibration energy harvesting , 2012 .

[92]  N. Panwar,et al.  Role of renewable energy sources in environmental protection: A review , 2011 .

[93]  Daniel J. Inman,et al.  A distributed parameter electromechanical and statistical model for energy harvesting from turbulence-induced vibration , 2014 .

[94]  Maureen Hand,et al.  IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2 , 2012 .

[95]  Vishak Sivadas,et al.  A study of several vortex-induced vibration techniques for piezoelectric wind energy harvesting , 2011, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[96]  A. Nayfeh,et al.  Piezoelectric energy harvesting from transverse galloping of bluff bodies , 2012 .

[97]  Y. Andreopoulos,et al.  Wake of a cylinder: a paradigm for energy harvesting with piezoelectric materials , 2010 .

[98]  Meiling Zhu,et al.  Airflow energy harvesting with high wind velocities for industrial applications , 2016 .

[99]  Simon Watkins,et al.  An investigation of fluttering piezoelectric energy harvesters in off-axis and turbulent flows , 2015 .

[100]  Elias Siores,et al.  An investigation of energy harvesting from renewable sources with PVDF and PZT , 2011 .

[101]  Daniel J. Inman,et al.  Piezoelectric Energy Harvesting , 2011 .

[102]  Simon Watkins,et al.  Fluttering energy harvesters in the wind: A review , 2016 .

[103]  Michael W. Shafer,et al.  Designing maximum power output into piezoelectric energy harvesters , 2012 .

[104]  Chuan Tian,et al.  Energy harvesting from low frequency applications using piezoelectric materials , 2014 .