Enforcing positivity in intrusive PC-UQ methods for reactive ODE systems

We explore the relation between the development of a non-negligible probability of negative states and the instability of numerical integration of the intrusive Galerkin ordinary differential equation system describing uncertain chemical ignition. To prevent this instability without resorting to either multi-element local polynomial chaos (PC) methods or increasing the order of the PC representation in time, we propose a procedure aimed at modifying the amplitude of the PC modes to bring the probability of negative state values below a user-defined threshold. This modification can be effectively described as a filtering procedure of the spectral PC coefficients, which is applied on-the-fly during the numerical integration when the current value of the probability of negative states exceeds the prescribed threshold. We demonstrate the filtering procedure using a simple model of an ignition process in a batch reactor. This is carried out by comparing different observables and error measures as obtained by non-intrusive Monte Carlo and Gauss-quadrature integration and the filtered intrusive procedure. The filtering procedure has been shown to effectively stabilize divergent intrusive solutions, and also to improve the accuracy of stable intrusive solutions which are close to the stability limits.

[1]  George Em Karniadakis,et al.  Noisy inflows cause a shedding-mode switching in flow past an oscillating cylinder. , 2004, Physical review letters.

[2]  Hermann G. Matthies,et al.  Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .

[3]  S. Janson Gaussian Hilbert Spaces , 1997 .

[4]  A. Nouy Generalized spectral decomposition method for solving stochastic finite element equations : Invariant subspace problem and dedicated algorithms , 2008 .

[5]  Roger Ghanem,et al.  Adaptive polynomial chaos expansions applied to statistics of extremes in nonlinear random vibration , 1998 .

[6]  Chris L. Pettit,et al.  investigated aeroelastic behaviors arising from variability in three input variables , the initial pitch angle and two stiffness coefficients , 2006 .

[7]  Andrei P. Sokolov,et al.  A Methodology for Quantifying Uncertainty in Climate Projections , 2000 .

[8]  J. Warnatz,et al.  Resolution of gas phase and surface combustion chemistry into elementary reactions , 1992 .

[9]  P. Rentrop,et al.  Stochastic Galerkin techniques for random ordinary differential equations , 2012, Numerische Mathematik.

[10]  George E. Karniadakis,et al.  Multi-element probabilistic collocation method in high dimensions , 2010, J. Comput. Phys..

[11]  Jefferson W. Tester,et al.  Incorporation of parametric uncertainty into complex kinetic mechanisms: Application to hydrogen oxidation in supercritical water , 1998 .

[12]  Habib N. Najm,et al.  A multigrid solver for two-dimensional stochastic diffusion equations , 2003 .

[13]  R. Ghanem,et al.  Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .

[14]  O P Le Maître,et al.  Spectral stochastic uncertainty quantification in chemical systems , 2004 .

[15]  Tamás Turányi,et al.  Local and global uncertainty analyses of a methane flame model. , 2005, The journal of physical chemistry. A.

[16]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[17]  Menner A Tatang,et al.  Direct incorporation of uncertainty in chemical and environmental engineering systems , 1995 .

[18]  A. Saltelli,et al.  Making best use of model evaluations to compute sensitivity indices , 2002 .

[19]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[20]  George E. Karniadakis,et al.  The multi-element probabilistic collocation method (ME-PCM): Error analysis and applications , 2008, J. Comput. Phys..

[21]  H. Najm,et al.  A stochastic projection method for fluid flow II.: random process , 2002 .

[22]  Y. Marzouk,et al.  Uncertainty quantification in chemical systems , 2009 .

[23]  Habib N. Najm,et al.  Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes , 2005, SIAM J. Sci. Comput..

[24]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[25]  D. Xiu,et al.  A new stochastic approach to transient heat conduction modeling with uncertainty , 2003 .

[26]  Chris L. Pettit,et al.  Spectral and multiresolution Wiener expansions of oscillatory stochastic processes , 2006 .

[27]  Daniel M. Tartakovsky,et al.  Stochastic analysis of transport in tubes with rough walls , 2006, J. Comput. Phys..

[28]  R. Ghanem Probabilistic characterization of transport in heterogeneous media , 1998 .

[29]  R. Ghanem,et al.  Stochastic Finite-Element Analysis of Seismic Soil-Structure Interaction , 2002 .

[30]  Cosmin Safta,et al.  Multiparameter Spectral Representation of Noise-Induced Competence in Bacillus Subtilis , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[31]  Roger Ghanem,et al.  Stochastic Finite Element Analysis for Multiphase Flow in Heterogeneous Porous Media , 1998 .

[32]  Houman Owhadi,et al.  A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..

[33]  G. Karniadakis,et al.  Long-Term Behavior of Polynomial Chaos in Stochastic Flow Simulations , 2006 .

[34]  Habib N. Najm,et al.  Multi-Resolution-Analysis Scheme for Uncertainty Quantification in Chemical Systems , 2007, SIAM J. Sci. Comput..

[35]  Khachik Sargsyan,et al.  A Stochastic Multiscale Coupling Scheme to Account for Sampling Noise in Atomistic-to-Continuum Simulations , 2012, Multiscale Model. Simul..

[36]  Xiang Ma,et al.  An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations , 2009, J. Comput. Phys..

[37]  R. D. Berry,et al.  Eigenvalues of the Jacobian of a Galerkin-Projected Uncertain ODE System , 2011, SIAM J. Sci. Comput..

[38]  Stefano Tarantola,et al.  Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models , 2004 .

[39]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[40]  P. Frauenfelder,et al.  Finite elements for elliptic problems with stochastic coefficients , 2005 .

[41]  Fabio Nobile,et al.  An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[42]  Jeroen A. S. Witteveen,et al.  Effect of randomness on multi-frequency aeroelastic responses resolved by Unsteady Adaptive Stochastic Finite Elements , 2009, J. Comput. Phys..

[43]  R. Ghanem Hybrid Stochastic Finite Elements and Generalized Monte Carlo Simulation , 1998 .

[44]  S. Isukapalli,et al.  Stochastic Response Surface Methods (SRSMs) for Uncertainty Propagation: Application to Environmental and Biological Systems , 1998, Risk analysis : an official publication of the Society for Risk Analysis.

[45]  R. Ghanem,et al.  A stochastic projection method for fluid flow. I: basic formulation , 2001 .

[46]  Jeroen A. S. Witteveen,et al.  An alternative unsteady adaptive stochastic finite elements formulation based on interpolation at constant phase , 2008 .

[47]  G. Karniadakis,et al.  An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .

[48]  Habib N. Najm,et al.  Multiscale Stochastic Preconditioners in Non-intrusive Spectral Projection , 2012, J. Sci. Comput..

[49]  N. Wiener The Homogeneous Chaos , 1938 .

[50]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[51]  Daniel M. Tartakovsky,et al.  A Two-Scale Nonperturbative Approach to Uncertainty Analysis of Diffusion in Random Composites , 2004, Multiscale Model. Simul..

[52]  Wright-Patterson Afb,et al.  Polynomial Chaos Expansion Applied to Airfoil Limit Cycle Oscillations , 2004 .

[53]  BabuskaIvo,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .

[54]  A. Nouy A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations , 2007 .

[55]  R. Ghanem,et al.  Uncertainty propagation using Wiener-Haar expansions , 2004 .

[56]  George E. Karniadakis,et al.  Time-dependent generalized polynomial chaos , 2010, J. Comput. Phys..

[57]  H. Najm,et al.  Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection , 2003 .

[58]  N. Zabaras,et al.  Using stochastic analysis to capture unstable equilibrium in natural convection , 2005 .

[59]  R. Ghanem,et al.  Quantifying uncertainty in chemical systems modeling , 2004 .

[60]  O. Ernst,et al.  ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .

[61]  Thomas A. Zang,et al.  Stochastic approaches to uncertainty quantification in CFD simulations , 2005, Numerical Algorithms.

[62]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[63]  G. Karniadakis,et al.  Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..

[64]  Thomas Y. Hou,et al.  Wiener Chaos expansions and numerical solutions of randomly forced equations of fluid mechanics , 2006, J. Comput. Phys..

[65]  L. Mathelin,et al.  A Stochastic Collocation Algorithm for Uncertainty Analysis , 2003 .

[66]  M Giona,et al.  Slow manifold structure in explosive kinetics. 1. Bifurcations of points-at-infinity in prototypical models. , 2006, The journal of physical chemistry. A.

[67]  Baskar Ganapathysubramanian,et al.  Sparse grid collocation schemes for stochastic natural convection problems , 2007, J. Comput. Phys..

[68]  Cosmin Safta,et al.  Uncertainty Quantification given Discontinuous Model Response and a Limited Number of Model Runs , 2012, SIAM J. Sci. Comput..

[69]  Gianluca Iaccarino,et al.  A least-squares approximation of partial differential equations with high-dimensional random inputs , 2009, J. Comput. Phys..

[70]  Habib N. Najm,et al.  Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .

[71]  Jeroen A. S. Witteveen,et al.  Modeling physical uncertainties in dynamic stall induced fluid-structure interaction of turbine blades using arbitrary polynomial chaos , 2007 .

[72]  Christoph Schwab,et al.  Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients , 2007 .

[73]  Nicholas Zabaras,et al.  Variational multiscale stabilized FEM formulations for transport equations: stochastic advection- , 2004 .

[74]  Omar M. Knio,et al.  Spectral Methods for Uncertainty Quantification , 2010 .

[75]  Nicholas Zabaras,et al.  A stochastic variational multiscale method for diffusion in heterogeneous random media , 2006, J. Comput. Phys..

[76]  Alison S. Tomlin,et al.  The role of sensitivity and uncertainty analysis in combustion modelling , 2013 .