Human-machine Cooperative Manipulation with Vision-based Motion Constraints

This chapter discusses a class of control algorithms that provide enhanced physical dexterity by imposing passive motion constraints. Such motion constraints are often referred to as virtual fixtures. It is shown that algorithms originally designed for vision-based control of manipulators can be easily converted into control algorithms that provide virtual fixtures. As a result it is possible to create advanced human-machine cooperative manipulation systems that take complete advantage of information provided by vision, yet permit the user to retain control of essential aspects of a given task.

[1]  Daniel E. Koditschek,et al.  Visual servoing via navigation functions , 2002, IEEE Trans. Robotics Autom..

[2]  Linda G. Shapiro,et al.  Computer and Robot Vision , 1991 .

[3]  Russell H. Taylor,et al.  An Augmentation System for Fine Manipulation , 2000, MICCAI.

[4]  Daniel E. Koditschek,et al.  Vision-based control via navigation functions , 2001 .

[5]  Gregory Hager,et al.  Task specification languages for uncalibrated visual servoing , 2000 .

[6]  Gregory D. Hager,et al.  Task specification and monitoring for uncalibrated hand/eye coordination , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[7]  Peter I. Corke,et al.  A new partitioned approach to image-based visual servo control , 2001, IEEE Trans. Robotics Autom..

[8]  Russell H. Taylor,et al.  Performance of Robotic Augmentation in Microsurgery-Scale Motions , 1999, MICCAI.

[9]  Gregory D. Hager,et al.  A "robust" convergent visual servoing system , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[10]  Linda G. Shapiro,et al.  Computer and Robot Vision (Volume II) , 2002 .

[11]  Gregory D. Hager,et al.  Control methods for guidance virtual fixtures in compliant human-machine interfaces , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[12]  Dinh Van Huynh,et al.  Algebra and Its Applications , 2006 .

[13]  Gregory D. Hager,et al.  Vision-assisted control for manipulation using virtual fixtures , 2001, IEEE Transactions on Robotics.

[14]  Gregory D. Hager,et al.  A modular system for robust positioning using feedback from stereo vision , 1997, IEEE Trans. Robotics Autom..

[15]  Gregory D. Hager,et al.  Vision-Based Assistance for Ophthalmic Micro-Surgery , 2004, MICCAI.

[16]  J. Weiss,et al.  Injection of tissue plasminogen activator into a branch retinal vein in eyes with central retinal vein occlusion. , 2001, Ophthalmology.

[17]  Gregory D. Hager,et al.  What Tasks can be Performed with an Uncalibrated Stereo Vision System? , 1999, International Journal of Computer Vision.

[18]  Nikolaos Papanikolopoulos,et al.  Adaptive robotic visual tracking: theory and experiments , 1993, IEEE Trans. Autom. Control..

[19]  Gregory D. Hager,et al.  X Vision: A Portable Substrate for Real-Time Vision Applications , 1998, Comput. Vis. Image Underst..

[20]  Peter Kazanzides,et al.  Portability and applicability of virtual fixtures across medical and manufacturing tasks , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[21]  Russell H. Taylor,et al.  A Steady-Hand Robotic System for Microsurgical Augmentation , 1999 .

[22]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[23]  Robert D. Howe,et al.  Evaluating control modes for constrained robotic surgery , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[24]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[25]  Patrick Rives,et al.  Classification and realization of the different vision-based tasks , 1993 .

[26]  Computer-Assisted Intervention,et al.  Medical Image Computing and Computer-Assisted Intervention – MICCAI’99 , 1999, Lecture Notes in Computer Science.

[27]  E. Malis,et al.  2 1/2 D Visual Servoing , 1999 .

[28]  Russell H. Taylor,et al.  Experiments with a steady hand robot in constrained compliant motion and path following , 1999, 8th IEEE International Workshop on Robot and Human Interaction. RO-MAN '99 (Cat. No.99TH8483).

[29]  Gregory D. Hager,et al.  Vision assisted control for manipulation using virtual fixtures: experiments at macro and micro scales , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[30]  Gregory D. Hager,et al.  Dynamic Guidance with Pseudoadmittance Virtual Fixtures , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[31]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[32]  Allison M. Okamura,et al.  Effect of virtual fixture compliance on human-machine cooperative manipulation , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.