Hyperelasticity of three-dimensional carbon nanotube sponge controlled by the stiffness of covalent junctions

[1]  M. Terrones,et al.  Controllable and Predictable Viscoelastic Behavior of 3D Boron‐Doped Multiwalled Carbon Nanotube Sponges , 2016 .

[2]  S. Judex,et al.  Porous three-dimensional carbon nanotube scaffolds for tissue engineering. , 2015, Journal of biomedical materials research. Part A.

[3]  C. Shan,et al.  Three-dimensional nitrogen-doped multiwall carbon nanotube sponges with tunable properties. , 2013, Nano letters (Print).

[4]  A. Reddy,et al.  Diameter-dependent bending modulus of individual multiwall boron nitride nanotubes. , 2013, The journal of physical chemistry. B.

[5]  Francisco del Monte,et al.  Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. , 2013, Chemical Society reviews.

[6]  Victor K. Lai,et al.  Mechanics of a Fiber Network Within a Non-Fibrillar Matrix: Model and Comparison with Collagen-Agarose Co-gels , 2012, Annals of Biomedical Engineering.

[7]  P. Ajayan,et al.  Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions , 2012, Scientific Reports.

[8]  R. C. Picu Mechanics of random fiber networks—a review , 2011 .

[9]  Emmanuel Flahaut,et al.  The weight and density of carbon nanotubes versus the number of walls and diameter , 2010 .

[10]  Yi Jia,et al.  Soft, highly conductive nanotube sponges and composites with controlled compressibility. , 2010, ACS nano.

[11]  Mary C Boyce,et al.  Constitutive modeling of the stress-strain behavior of F-actin filament networks. , 2008, Acta biomaterialia.

[12]  H. Lee,et al.  Persistence Length of Multiwalled Carbon Nanotubes with Static Bending , 2007 .

[13]  L. Forró,et al.  Diameter-dependent elastic modulus supports the metastable-catalyst growth of carbon nanotubes. , 2007, Nano letters.

[14]  M. Terrones,et al.  Covalent 2D and 3D networks from 1D nanostructures: designing new materials. , 2007, Nano letters.

[15]  S. Ciraci,et al.  Theoretical study of crossed and parallel carbon nanotube junctions and three-dimensional grid structures , 2004 .

[16]  P. Janmey,et al.  Nonlinear elasticity in biological gels , 2004, Nature.

[17]  R. Lipowsky,et al.  Stretching of semiflexible polymers with elastic bonds , 2004, The European physical journal. E, Soft matter.

[18]  Mario M. Attard,et al.  Finite strain––isotropic hyperelasticity , 2003 .

[19]  Hans Jürgen Kreuzer,et al.  Stretching response of discrete semiflexible polymers , 2003 .

[20]  Dong Qian,et al.  Mechanics of carbon nanotubes , 2002 .

[21]  P. Ajayan,et al.  Molecular junctions by joining single-walled carbon nanotubes. , 2002, Physical review letters.

[22]  P. Nelson,et al.  Theory of high-force DNA stretching and overstretching. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  G. Rogerson,et al.  A method to model simple tension experiments using finite elasticity theory with an application to some polyurethane foams , 2002 .

[24]  G. Froudakis Why Alkali-Metal-Doped Carbon Nanotubes Possess High Hydrogen Uptake , 2001 .

[25]  Jeffrey E. Bischoff,et al.  A new constitutive model for the compressibility of elastomers at finite deformations , 2001 .

[26]  M. Volkenstein,et al.  Statistical mechanics of chain molecules , 1970 .

[27]  C. Overberger Book reviews. Encyclopedia of polymer science and technology. Volume 10. Herman F. Murk, Norman G. Gaylord, and Norbert M. Bikales, eds. Wiley (Interscience), New York, 1969 , 1969 .

[28]  B. Wei,et al.  A statistical mechanics model of carbon nanotube macro-films , 2011 .

[29]  Peter Fratzl,et al.  Collagen : structure and mechanics , 2008 .

[30]  J. Butler,et al.  Mechanical connections between elastin and collagen. , 1994, Connective tissue research.

[31]  B. Storȧkers,et al.  On material representation and constitutive branching in finite compressible elasticity , 1986 .

[32]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[33]  R. T. Sanderson Chemical Bonds and Bond Energy , 1976 .

[34]  D. J. Montgomery,et al.  The physics of rubber elasticity , 1949 .