Soft Multifunctional Composites and Emulsions with Liquid Metals

Binary mixtures of liquid metal (LM) or low-melting-point alloy (LMPA) in an elastomeric or fluidic carrier medium can exhibit unique combinations of electrical, thermal, and mechanical properties. This emerging class of soft multifunctional composites have potential applications in wearable computing, bio-inspired robotics, and shape-programmable architectures. The dispersion phase can range from dilute droplets to connected networks that support electrical conductivity. In contrast to deterministically patterned LM microfluidics, LMPA- and LM-embedded elastomer (LMEE) composites are statistically homogenous and exhibit effective bulk properties. Eutectic Ga-In (EGaIn) and Ga-In-Sn (Galinstan) alloys are typically used due to their high conductivity, low viscosity, negligible nontoxicity, and ability to wet to nonmetallic materials. Because they are liquid-phase, these alloys can alter the electrical and thermal properties of the composite while preserving the mechanics of the surrounding medium. For composites with LMPA inclusions (e.g., Field's metal, Pb-based solder), mechanical rigidity can be actively tuned with external heating or electrical activation. This progress report, reviews recent experimental and theoretical studies of this emerging class of soft material architectures and identifies current technical challenges and opportunities for further advancement.

[1]  Nikolaus Correll,et al.  Soft Autonomous Materials - Using Active Elasticity and Embedded Distributed Computation , 2010, ISER.

[2]  S. Quake,et al.  Monolithic microfabricated valves and pumps by multilayer soft lithography. , 2000, Science.

[3]  Gregory H. Huff,et al.  Manipulating Liquid Metal Droplets in Microfluidic Channels With Minimized Skin Residues Toward Tunable RF Applications , 2015, Journal of Microelectromechanical Systems.

[4]  Sven Eckert,et al.  Thermophysical properties of the liquid Ga–Sn–Zn eutectic alloy , 2018, Fluid Phase Equilibria.

[5]  Lucia Beccai,et al.  A Novel Soft Metal‐Polymer Composite for Multidirectional Pressure Energy Harvesting , 2014 .

[6]  Raluca M. Fratila,et al.  Bias induced transition from an ohmic to a non-ohmic interface in supramolecular tunneling junctions with Ga2O3/EGaIn top electrodes. , 2014, Nanoscale.

[7]  Gen Kamita,et al.  Lamellar Bilayers as Reversible Sacrificial Bonds To Toughen Hydrogel: Hysteresis, Self-Recovery, Fatigue Resistance, and Crack Blunting , 2011 .

[8]  M. Dickey,et al.  Production of Liquid Metal Spheres by Molding , 2014 .

[9]  A. Javey,et al.  Toward the Development of Printable Nanowire Electronics and Sensors , 2009 .

[10]  Mitesh Parmar,et al.  An oxidized liquid metal-based microfluidic platform for tunable electronic device applications. , 2015, Lab on a chip.

[11]  Michael D. Dickey,et al.  Emerging Applications of Liquid Metals Featuring Surface Oxides , 2014, ACS applied materials & interfaces.

[12]  D. R. McKenzie,et al.  The conductivity of lattices of spheres I. The simple cubic lattice , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  Junhong Park,et al.  Stretchable Loudspeaker using Liquid Metal Microchannel , 2015, Scientific Reports.

[14]  Carmel Majidi,et al.  Soft-matter capacitors and inductors for hyperelastic strain sensing and stretchable electronics , 2013 .

[15]  Robert J. Wood,et al.  Biocompatible Pressure Sensing Skins for Minimally Invasive Surgical Instruments , 2016, IEEE Sensors Journal.

[16]  Mariangela Manti,et al.  Stiffening in Soft Robotics: A Review of the State of the Art , 2016, IEEE Robotics & Automation Magazine.

[17]  X. Crispin,et al.  Solution processed liquid metal-conducting polymer hybrid thin films as electrochemical pH-threshold indicators , 2015 .

[18]  G. Whitesides,et al.  Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. , 2002, Accounts of chemical research.

[19]  Jin Kon Kim,et al.  Interfacing liquid metals with stretchable metal conductors. , 2015, ACS applied materials & interfaces.

[20]  G. Hamed,et al.  On the Role of Bound Rubber in Carbon-Black Reinforcement , 1989 .

[21]  D. Rossi,et al.  Dielectric constant enhancement in a silicone elastomer filled with lead magnesium niobate–lead titanate , 2007 .

[22]  J. Koster,et al.  Directional Solidification and Melting of Eutectic GaIn , 1999 .

[23]  Jing Liu,et al.  Self‐Fueled Biomimetic Liquid Metal Mollusk , 2015, Advanced materials.

[24]  Carmel Majidi,et al.  Stretchable, High‐k Dielectric Elastomers through Liquid‐Metal Inclusions , 2016, Advanced materials.

[25]  Dong-Weon Lee,et al.  Hydrochloric acid-impregnated paper for gallium-based liquid metal microfluidics , 2015 .

[26]  Zhen Gu,et al.  Transformable liquid-metal nanomedicine , 2015, Nature Communications.

[27]  Y. Mai,et al.  Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites , 2008 .

[28]  S. Ko,et al.  Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network , 2012, Advanced materials.

[29]  A. Mitchell,et al.  Controlled Electrochemical Deformation of Liquid-Phase Gallium. , 2016, ACS applied materials & interfaces.

[30]  Yun Lu,et al.  Fabrication and properties of conductive conjugated polymers/silk fibroin composite fibers , 2008 .

[31]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[32]  Deyong Zhu,et al.  Liquid metal sponges for mechanically durable, all-soft, electrical conductors , 2017 .

[33]  D. Sameoto,et al.  Fabrication methods and applications of microstructured gallium based liquid metal alloys , 2016 .

[34]  Michael D. Dickey,et al.  Giant and switchable surface activity of liquid metal via surface oxidation , 2014, Proceedings of the National Academy of Sciences.

[35]  Z. Suo,et al.  Exceptionally tough and notch-insensitive magnetic hydrogels. , 2015, Soft matter.

[36]  Carmel Majidi,et al.  3D structures of liquid-phase GaIn alloy embedded in PDMS with freeze casting. , 2013, Lab on a chip.

[37]  Michael D. Bartlett,et al.  High thermal conductivity in soft elastomers with elongated liquid metal inclusions , 2017, Proceedings of the National Academy of Sciences.

[38]  Benjamin C. K. Tee,et al.  25th Anniversary Article: The Evolution of Electronic Skin (E‐Skin): A Brief History, Design Considerations, and Recent Progress , 2013, Advanced materials.

[39]  G. J. Lake Fatigue and Fracture of Elastomers , 1995 .

[40]  T. C. Choy Effective medium theory : principles and applications , 1999 .

[41]  L. Shao,et al.  High thermal conductivity in amorphous polymer blends by engineered interchain interactions. , 2015, Nature materials.

[42]  P. N. Sen,et al.  A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads , 1981 .

[43]  Khashayar Khoshmanesh,et al.  Steering liquid metal flow in microchannels using low voltages. , 2015, Lab on a chip.

[44]  John A Rogers,et al.  Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors , 2012, Nature Communications.

[45]  D. Parkinson,et al.  Breakage of Carbon-Rubber Networks by Applied Stress , 1952 .

[46]  Carmel Majidi,et al.  Liquid‐Phase Metal Inclusions for a Conductive Polymer Composite , 2015, Advanced materials.

[47]  Sanlin S. Robinson,et al.  Morphing Metal and Elastomer Bicontinuous Foams for Reversible Stiffness, Shape Memory, and Self‐Healing Soft Machines , 2016, Advanced materials.

[48]  Robert W Style,et al.  Surface tension and the Mori–Tanaka theory of non-dilute soft composite solids , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[49]  Sung-hoon Ahn,et al.  Smart soft composite actuator with shape retention capability using embedded fusible alloy structures , 2015 .

[50]  C. Belin,et al.  Effect of strain on the properties of a styrene–butadiene rubber filled with multiwall carbon nanotubes , 2007 .

[51]  D. Mckenzie,et al.  Exact modelling of cubic lattice permittivity and conductivity , 1977, Nature.

[52]  F. Bueche Molecular basis for the mullins effect , 1960 .

[53]  D. Tyler,et al.  Stimuli-Responsive Polymer Nanocomposites Inspired by the Sea Cucumber Dermis , 2008, Science.

[54]  Arnan Mitchell,et al.  Creation of Liquid Metal 3D Microstructures Using Dielectrophoresis , 2015 .

[55]  Xuanhe Zhao,et al.  Design of stiff, tough and stretchy hydrogel composites via nanoscale hybrid crosslinking and macroscale fiber reinforcement. , 2014, Soft matter.

[56]  Chang-Jin Kim,et al.  Characterization of Nontoxic Liquid-Metal Alloy Galinstan for Applications in Microdevices , 2012, Journal of Microelectromechanical Systems.

[57]  Carmel Majidi,et al.  Soft-matter composites with electrically tunable elastic rigidity , 2013 .

[58]  P. Weiss,et al.  Directing substrate morphology via self-assembly: ligand-mediated scission of gallium-indium microspheres to the nanoscale. , 2011, Nano letters.

[59]  Wenqi Hu,et al.  Continuous Electrowetting of Non-toxic Liquid Metal for RF Applications , 2014, IEEE Access.

[60]  Yong-Lae Park,et al.  Design and Fabrication of Soft Artificial Skin Using Embedded Microchannels and Liquid Conductors , 2012, IEEE Sensors Journal.

[61]  R. Parshad,et al.  Permittivity of conductor-dielectric heterogeneous mixtures , 1973 .

[62]  Zhigang Wu,et al.  Microfluidic stretchable RF electronics. , 2010, Lab on a chip.

[63]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[64]  Sungjoon Lim,et al.  Frequency-Switchable Metamaterial Absorber Injecting Eutectic Gallium-Indium (EGaIn) Liquid Metal Alloy , 2015, Sensors.

[65]  Konrad Rykaczewski,et al.  Design and characterization of a single channel two-liquid capacitor and its application to hyperelastic strain sensing. , 2015, Lab on a chip.

[66]  D. Rossi,et al.  Improvement of electromechanical actuating performances of a silicone dielectric elastomer by dispersion of titanium dioxide powder , 2005, IEEE Transactions on Dielectrics and Electrical Insulation.

[67]  Ishan D. Joshipura,et al.  Methods to pattern liquid metals , 2015 .

[68]  Jason Heikenfeld,et al.  Reconfigurable liquid metal circuits by Laplace pressure shaping , 2012 .

[69]  G. Whitesides,et al.  Eutectic Gallium‐Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature , 2008 .

[70]  Carmel Majidi,et al.  High‐Density Soft‐Matter Electronics with Micron‐Scale Line Width , 2014, Advanced materials.

[71]  Sungjoon Lim,et al.  Frequency-switchable half-mode substrate-integrated waveguide antenna injecting eutectic gallium indium (EGaIn) liquid metal alloy , 2015 .

[72]  Ryan Enright,et al.  Analysis of Galinstan-Based Microgap Cooling Enhancement Using Structured Surfaces , 2015 .

[73]  Ali Khademhosseini,et al.  Nanocomposite hydrogels for biomedical applications. , 2014, Biotechnology and bioengineering.

[74]  Mohammed Mohammed,et al.  Self-Running Liquid Metal Drops that Delaminate Metal Films at Record Velocities. , 2015, ACS applied materials & interfaces.

[75]  George M. Whitesides,et al.  Viscoelastic properties of oxide-coated liquid metals , 2009 .

[76]  Arnan Mitchell,et al.  Ionic imbalance induced self-propulsion of liquid metals , 2016, Nature Communications.

[77]  Kamran Entesari,et al.  Miniature and Reconfigurable CPW Folded Slot Antennas Employing Liquid-Metal Capacitive Loading , 2015, IEEE Transactions on Antennas and Propagation.

[78]  O. Lopez-Pamies,et al.  Dielectric elastomer composites: A general closed-form solution in the small-deformation limit , 2015 .

[79]  Meng Gao,et al.  A handy liquid metal based electroosmotic flow pump. , 2014, Lab on a chip.

[80]  Wolfgang Bauhofer,et al.  A review and analysis of electrical percolation in carbon nanotube polymer composites , 2009 .

[81]  Arnan Mitchell,et al.  Hydrodynamic directional control of liquid metal droplets within a microfluidic flow focusing system , 2016 .

[82]  Magnus Jobs,et al.  Liquid alloy printing of microfluidic stretchable electronics. , 2012, Lab on a chip.

[83]  D. Floreano,et al.  Variable stiffness material based on rigid low-melting-point-alloy microstructures embedded in soft poly(dimethylsiloxane) (PDMS) , 2013 .

[84]  Pierre Gilormini,et al.  Author manuscript, published in "European Polymer Journal (2009) 601-612" A review on the Mullins ’ effect , 2022 .

[85]  M. Dickey,et al.  Ultrastretchable Fibers with Metallic Conductivity Using a Liquid Metal Alloy Core , 2013 .

[86]  Carmel Majidi,et al.  Rigidity-tuning conductive elastomer , 2015 .

[87]  Heung Cho Ko,et al.  A hemispherical electronic eye camera based on compressible silicon optoelectronics , 2008, Nature.

[88]  L. Mullins Softening of Rubber by Deformation , 1969 .

[89]  O. Lopez-Pamies,et al.  Nonlinear electroelastic deformations of dielectric elastomer composites: II — Non-Gaussian elastic dielectrics , 2017 .

[90]  Hyung-Jun Koo,et al.  Towards All‐Soft Matter Circuits: Prototypes of Quasi‐Liquid Devices with Memristor Characteristics , 2011, Advanced materials.

[91]  George M Whitesides,et al.  Cofabrication of electromagnets and microfluidic systems in poly(dimethylsiloxane). , 2006, Angewandte Chemie.

[92]  George M. Whitesides,et al.  Electrical Resistance of AgTS–S(CH2)n−1CH3//Ga2O3/EGaIn Tunneling Junctions , 2012 .

[93]  O. Lopez-Pamies,et al.  The overall elastic dielectric properties of a suspension of spherical particles in rubber: An exact explicit solution in the small-deformation limit , 2014 .

[94]  E. B. Orler,et al.  Stress softening experiments in silica-filled polydimethylsiloxane provide insight into a mechanism for the Mullins effect , 2005 .

[95]  R. Houwink Slipping of Molecules during the Deformation of Reinforced Rubber , 1956 .

[96]  P. Veltink,et al.  The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications , 1997 .

[97]  Yonggang Huang,et al.  Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability , 2011, Proceedings of the National Academy of Sciences.

[98]  D. Floreano,et al.  Variable Stiffness Fiber with Self‐Healing Capability , 2016, Advanced materials.

[99]  Minwoo Park,et al.  Design of conductive composite elastomers for stretchable electronics , 2014 .

[100]  S. W. Thomas,et al.  Chemical sensors based on amplifying fluorescent conjugated polymers. , 2007, Chemical reviews.

[101]  Saeid Nahavandi,et al.  Dynamic Nanofin Heat Sinks , 2014 .

[102]  Jing Liu,et al.  Thermally Conductive and Highly Electrically Resistive Grease Through Homogeneously Dispersing Liquid Metal Droplets Inside Methyl Silicone Oil , 2014 .

[103]  John A. Rogers,et al.  Inorganic Semiconductors for Flexible Electronics , 2007 .

[104]  Muhammad Sahimi,et al.  Non-linear and non-local transport processes in heterogeneous media: from long-range correlated percolation to fracture and materials breakdown , 1998 .

[105]  Garboczi Linear dielectric-breakdown electrostatics. , 1988, Physical review. B, Condensed matter.

[106]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[107]  A. Lesser,et al.  A Physical and Mechanical Study of Prestressed Competitive Double Network Thermoplastic Elastomers , 2011 .

[108]  S. Shtrikman,et al.  A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .

[109]  M. Dickey,et al.  Influence of water on the interfacial behavior of gallium liquid metal alloys. , 2014, ACS applied materials & interfaces.

[110]  Johan Liu,et al.  Mechanically Stretchable and Electrically Insulating Thermal Elastomer Composite by Liquid Alloy Droplet Embedment , 2015, Scientific Reports.

[111]  G. Zaikov,et al.  On Polymer Nanocomposites , 2013 .

[112]  M. Nasabi,et al.  Mechanically tolerant fluidic split ring resonators , 2016 .

[113]  Sven Eckert,et al.  Electrophysical and structure-sensitive properties of liquid Ga–In alloys , 2015 .

[114]  A. Aleksandrov,et al.  Strength of Amorphous and of Crystallizing Rubberlike Polymers , 1946 .

[115]  E. Dufresne,et al.  Surface tension and the mechanics of liquid inclusions in compliant solids. , 2014, Soft matter.

[116]  O. Lopez-Pamies,et al.  Nonlinear electroelastic deformations of dielectric elastomer composites: I—Ideal elastic dielectrics , 2017 .

[117]  W. Kier The diversity of hydrostatic skeletons , 2012, Journal of Experimental Biology.

[118]  Klas Hjort,et al.  Microfluidic Stretchable Radio-Frequency Devices , 2015, Proceedings of the IEEE.

[119]  M. S. Joshi,et al.  Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles , 2006 .

[120]  Jeong-Bong (JB) Lee,et al.  Liquid metal-based reconfigurable and stretchable photolithography , 2016 .

[121]  Cody K. Hayashi,et al.  Conformal Liquid-Metal Electrodes for Flexible Graphene Device Interconnects , 2016, IEEE Transactions on Electron Devices.

[122]  Z. Suo,et al.  Highly stretchable and tough hydrogels , 2012, Nature.

[123]  J. Jur,et al.  Silver decorated polymer supported semiconductor thin films by UV aided metalized laser printing , 2016 .

[124]  Choon Chiang Foo,et al.  Stretchable, Transparent, Ionic Conductors , 2013, Science.

[125]  Zhenan Bao,et al.  Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes , 2014, J. Mater. Chem. A.

[126]  Robert J. Wood,et al.  Wearable soft sensing suit for human gait measurement , 2014, Int. J. Robotics Res..

[127]  X. Niu,et al.  Microdroplet formation in rounded flow-focusing junctions , 2016 .

[128]  Shengtao Li,et al.  Fundamentals, processes and applications of high-permittivity polymer–matrix composites , 2012 .

[129]  G. Exarhos,et al.  High‐Dielectric‐Constant Silver–Epoxy Composites as Embedded Dielectrics , 2005 .

[130]  S. Mecking,et al.  Nanoparticles of conjugated polymers. , 2010, Chemical reviews.

[131]  Mitesh Parmar,et al.  PDMS based coplanar microfluidic channels for the surface reduction of oxidized Galinstan. , 2014, Lab on a chip.

[132]  Pierre Mertiny,et al.  Tunneling Conductivity and Piezoresistivity of Composites Containing Randomly Dispersed Conductive Nano-Platelets , 2014, Materials.

[133]  Patrick T. Mather,et al.  Review of progress in shape-memory polymers , 2007 .

[134]  Yonggang Huang,et al.  Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. , 2010, Nature materials.

[135]  C. Majidi,et al.  Thermal analysis and design of a multi-layered rigidity tunable composite , 2013 .

[136]  Guggi Kofod,et al.  Soft Conductive Elastomer Materials for Stretchable Electronics and Voltage Controlled Artificial Muscles , 2013, Advanced materials.

[137]  P. Sheng,et al.  Characterizing and Patterning of PDMS‐Based Conducting Composites , 2007 .

[138]  C. Nan,et al.  Effective thermal conductivity of particulate composites with interfacial thermal resistance , 1997 .

[139]  Khashayar Khoshmanesh,et al.  An Integrated Liquid Cooling System Based on Galinstan Liquid Metal Droplets. , 2016, ACS applied materials & interfaces.

[140]  James P. Wissman,et al.  Saddle-like deformation in a dielectric elastomer actuator embedded with liquid-phase gallium-indium electrodes , 2014 .

[141]  T. Kurokawa,et al.  Double‐Network Hydrogels with Extremely High Mechanical Strength , 2003 .

[142]  J. Gong,et al.  Materials both Tough and Soft , 2014, Science.

[143]  Yonggang Huang,et al.  Stretchable and Foldable Silicon Integrated Circuits , 2008, Science.

[144]  Kanagasundar Appusamy,et al.  Electrolytic reduction of liquid metal oxides and its application to reconfigurable structured devices , 2015, Scientific Reports.

[145]  Jae Hyung Lee,et al.  On-demand, parallel droplet merging method with non-contact droplet pairing in droplet-based microfluidics , 2016 .

[146]  Michael D. Dickey,et al.  Recapillarity: Electrochemically Controlled Capillary Withdrawal of a Liquid Metal Alloy from Microchannels , 2015 .

[147]  Sivaraman Guruswamy,et al.  Reconfigurable terahertz metamaterial device with pressure memory. , 2014, Optics express.

[148]  Jing Liu,et al.  Electromagnetic rotation of a liquid metal sphere or pool within a solution , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[149]  Heung Cho Ko,et al.  Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements. , 2009, Small.

[150]  Sungjoon Lim,et al.  Flexible liquid metal-filled metamaterial absorber on polydimethylsiloxane (PDMS). , 2015, Optics express.

[151]  Wei Zhang,et al.  Liquid Metal/Metal Oxide Frameworks , 2014 .

[152]  Feng Xu,et al.  Liquid on Paper: Rapid Prototyping of Soft Functional Components for Paper Electronics , 2015, Scientific Reports.

[153]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[154]  M. McEvoy,et al.  Thermoplastic variable stiffness composites with embedded, networked sensing, actuation, and control , 2015 .

[155]  Jonathan A. Fan,et al.  Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems , 2013, Nature Communications.

[156]  Jacob J. Adams,et al.  Handwritten, Soft Circuit Boards and Antennas Using Liquid Metal Nanoparticles. , 2015, Small.

[157]  Michael D. Dickey,et al.  Liquid metal actuation by electrical control of interfacial tension , 2016 .

[158]  Yong Cao,et al.  Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. , 2009, Accounts of chemical research.

[159]  Yihe Zhang,et al.  Morphology and Dielectric Property of Homogenous BaTiO3/PVDF Nanocomposites Prepared via the Natural Adsorption Action of Nanosized BaTiO3 , 2005 .

[160]  Jin-Seo Noh,et al.  Conductive Elastomers for Stretchable Electronics, Sensors and Energy Harvesters , 2016, Polymers.

[161]  N. A. Siddiqui,et al.  DISPERSION AND FUNCTIONALIZATION OF CARBON NANOTUBES FOR POLYMER-BASED NANOCOMPOSITES: A REVIEW , 2010 .

[162]  Guggi Kofod,et al.  Elastic block copolymer nanocomposites with controlled interfacial interactions for artificial muscles with direct voltage control , 2011 .

[163]  M. Thuo,et al.  Synthesis of liquid core-shell particles and solid patchy multicomponent particles by shearing liquids into complex particles (SLICE). , 2014, Langmuir : the ACS journal of surfaces and colloids.

[164]  George M. Whitesides,et al.  Microsolidics: Fabrication of Three‐Dimensional Metallic Microstructures in Poly(dimethylsiloxane) , 2007 .

[165]  T. Kurokawa,et al.  Super tough double network hydrogels and their application as biomaterials , 2012 .

[166]  Kamran Entesari,et al.  A Microfluidically Reconfigurable Dual-Band Slot Antenna With a Frequency Coverage Ratio of 3:1 , 2016, IEEE Antennas and Wireless Propagation Letters.

[167]  D. Jeffrey,et al.  Conduction through a random suspension of spheres , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[168]  J. Trotter,et al.  Towards a fibrous composite with dynamically controlled stiffness: lessons from echinoderms. , 2000, Biochemical Society transactions.

[169]  M. Dresselhaus,et al.  A facile route for 3D aerogels from nanostructured 1D and 2D materials , 2012, Scientific Reports.

[170]  Y. Kim,et al.  Metallic nanoemulsion with galinstan for high heat-flux thermal management , 2016 .

[171]  J. Obrzut,et al.  Dielectric Properties of Polymer/Ferroelectric Ceramic Composites from 100 Hz to 10 GHz , 2001 .

[172]  Rebecca K. Kramer,et al.  Mechanically Sintered Gallium–Indium Nanoparticles , 2015, Advanced materials.

[173]  M. Dickey,et al.  A study of the production and reversible stability of EGaIn liquid metal microspheres using flow focusing. , 2012, Lab on a Chip.

[174]  Jiongxin Lu,et al.  Recent advances in high-k nanocomposite materials for embedded capacitor applications , 2008, IEEE Transactions on Dielectrics and Electrical Insulation.

[175]  J. Rogers,et al.  Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. , 2011, Nature materials.

[176]  Dishit P. Parekh,et al.  3D printing of liquid metals as fugitive inks for fabrication of 3D microfluidic channels. , 2016, Lab on a chip.

[177]  Beale,et al.  Dielectric breakdown in continuous models of metal-loaded dielectrics. , 1992, Physical review. B, Condensed matter.

[178]  Khai Leok Chan,et al.  Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. , 2009, Chemical reviews.

[179]  John S. Wettlaufer,et al.  Stiffening solids with liquid inclusions , 2014, Nature Physics.

[180]  Yonggang Huang,et al.  Printed Assemblies of Inorganic Light-Emitting Diodes for Deformable and Semitransparent Displays , 2009, Science.

[181]  Wolfgang-Andreas C. Bauer,et al.  Formation of Spherical and Non‐Spherical Eutectic Gallium‐Indium Liquid‐Metal Microdroplets in Microfluidic Channels at Room Temperature , 2012 .

[182]  Seungho Yu,et al.  Electrical, thermal, and species transport properties of liquid eutectic Ga-In and Ga-In-Sn from first principles. , 2014, The Journal of chemical physics.

[183]  Xiasheng Guo,et al.  On-Chip Production of Size-Controllable Liquid Metal Microdroplets Using Acoustic Waves. , 2016, Small.

[184]  Rebecca K. Kramer,et al.  Direct Writing of Gallium‐Indium Alloy for Stretchable Electronics , 2014 .

[185]  D. Milkie,et al.  Carbon Nanotube Aerogels , 2007 .

[186]  C. Majidi,et al.  Gelation and mechanical response of patchy rods. , 2015, Soft matter.

[187]  S. Güneş,et al.  Vacuum-free processed bulk heterojunction solar cells with E-GaIn cathode as an alternative to Al electrode , 2015 .

[188]  Justin A. Blanco,et al.  Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. , 2010, Nature materials.

[189]  K. Kalantar-zadeh,et al.  Generation of catalytically active materials from a liquid metal precursor. , 2015, Chemical communications.

[190]  Yi Du,et al.  Nanodroplets for Stretchable Superconducting Circuits , 2016 .

[191]  Ajit Khosla,et al.  Preparation, characterization and micromolding of multi-walled carbon nanotube polydimethylsiloxane conducting nanocomposite polymer , 2009 .

[192]  Insang You,et al.  Material approaches to stretchable strain sensors. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[193]  T. Motokawa CONNECTIVE TISSUE CATCH IN ECHINODERMS , 1984 .

[194]  Sungjoon Lim,et al.  Wideband-Switchable Metamaterial Absorber Using Injected Liquid Metal , 2016, Scientific Reports.

[195]  Kamran Entesari,et al.  A Miniaturized Microfluidically Reconfigurable Coplanar Waveguide Bandpass Filter With Maximum Power Handling of 10 Watts , 2015, IEEE Transactions on Microwave Theory and Techniques.

[196]  M. Klüppel,et al.  A generalized tube model of rubber elasticity and stress softening of filler reinforced elastomer systems , 2000 .

[197]  Bumkyoo Choi,et al.  Stretching and Twisting Sensing With Liquid-Metal Strain Gauges Printed on Silicone Elastomers , 2015, IEEE Sensors Journal.