A multilevel finite element method for Fredholm integral eigenvalue problems
暂无分享,去创建一个
[1] Mark Girolami,et al. Orthogonal Series Density Estimation and the Kernel Eigenvalue Problem , 2002, Neural Computation.
[2] Tao Tang,et al. On Discrete Least-Squares Projection in Unbounded Domain with Random Evaluations and its Application to Parametric Uncertainty Quantification , 2014, SIAM J. Sci. Comput..
[3] Kedar Khare,et al. Sampling theorem, bandlimited integral kernels and inverse problems , 2007 .
[4] Ian H. Sloan. Iterated Galerkin Method for Eigenvalue Problems , 1976 .
[5] R. Tempone,et al. ON THE OPTIMAL POLYNOMIAL APPROXIMATION OF STOCHASTIC PDES BY GALERKIN AND COLLOCATION METHODS , 2012 .
[6] Tao Zhou,et al. Multivariate Discrete Least-Squares Approximations with a New Type of Collocation Grid , 2014, SIAM J. Sci. Comput..
[7] Hyunjoong Kim,et al. Functional Analysis I , 2017 .
[8] Arieh Iserles,et al. The spectral problem for a class of highly oscillatory Fredholm integral operators , 2010 .
[9] K. Phoon,et al. Implementation of Karhunen-Loeve expansion for simulation using a wavelet-Galerkin scheme , 2002 .
[10] Radu Alexandru Todor,et al. Robust Eigenvalue Computation for Smoothing Operators , 2006, SIAM J. Numer. Anal..
[11] Jinchao Xu,et al. A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..
[12] F. H. Middleton,et al. Surface‐Wave Propagation in a Continuously Stratified Medium , 1966 .
[13] BabuskaIvo,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .
[14] N. Wiener. The Homogeneous Chaos , 1938 .
[15] Fabio Nobile,et al. A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[16] K. Atkinson. The Numerical Solution of Integral Equations of the Second Kind , 1997 .
[17] Ernst Rank,et al. Finite cell method , 2007 .
[18] Tao Tang,et al. Galerkin Methods for Stochastic Hyperbolic Problems Using Bi-Orthogonal Polynomials , 2012, J. Sci. Comput..
[19] S. P. Oliveira,et al. Spectral element approximation of Fredholm integral eigenvalue problems , 2014, J. Comput. Appl. Math..
[20] I. Babuska,et al. Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .
[21] Fabio Nobile,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..
[22] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[23] Christoph Schwab,et al. Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..
[24] Philippe G. Ciarlet,et al. A NEW DUALITY APPROACH TO ELASTICITY , 2012 .
[25] F. Chatelin. Spectral approximation of linear operators , 2011 .
[26] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[27] Herbert B. Keller. On the accuracy of finite difference approximations to the eigenvalues of differential and integral operators , 1965 .
[28] Hehu Xie,et al. A type of multilevel method for the Steklov eigenvalue problem , 2014 .
[29] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..
[30] Hehu Xie,et al. A multi-level correction scheme for eigenvalue problems , 2011, Math. Comput..
[31] Tao Tang,et al. Convergence Analysis for Stochastic Collocation Methods to Scalar Hyperbolic Equations with a Random Wave Speed , 2010 .
[32] Ivan P. Gavrilyuk,et al. Collocation methods for Volterra integral and related functional equations , 2006, Math. Comput..
[33] Hehu Xie,et al. A full multigrid method for eigenvalue problems , 2014, J. Comput. Phys..