Computing the Isolated Roots by Matrix Methods
暂无分享,去创建一个
[1] Deepak Kapur,et al. Algebraic and geometric reasoning using Dixon resultants , 1994, ISSAC '94.
[2] Michael Francis Atiyah,et al. Introduction to commutative algebra , 1969 .
[3] B. Mourrain,et al. Solving special polynomial systems by using structured matrices and algebraic residues , 1997 .
[4] Victor Y. Pan,et al. Multidimensional structured matrices and polynomial systems , 1996 .
[5] Uwe Storch,et al. Über Spurfunktionen bei vollständigen Durchschnitten. , 1975 .
[6] DemmelJames,et al. The generalized Schur decomposition of an arbitrary pencil ABrobust software with error bounds and applications. Part II , 1993 .
[7] Bernd Sturmfels,et al. Product formulas for resultants and Chow forms , 1993 .
[8] H. Stetter,et al. An Elimination Algorithm for the Computation of All Zeros of a System of Multivariate Polynomial Equations , 1988 .
[9] J. Jouanolou,et al. Le formalisme du résultant , 1991 .
[10] Daniel Lazard,et al. Resolution des Systemes d'Equations Algebriques , 1981, Theor. Comput. Sci..
[11] Ioannis Z. Emiris,et al. On the Complexity of Sparse Elimination , 1996, J. Complex..
[12] J. Renegar,et al. On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I , 1989 .
[13] A. Chistov,et al. Algorithm of polynomial complexity for factoring polynomials and finding the components of varieties in subexponential time , 1986 .
[14] John F. Canny,et al. Generalised Characteristic Polynomials , 1990, J. Symb. Comput..
[15] Mohamed Elkadi,et al. Approche effective des résidus algébriques , 1996 .
[16] J. Canny,et al. Efficient incremental algorithms for the sparse resultant and the mixed volume , 1995 .
[17] I. M. Gelʹfand,et al. Discriminants, Resultants, and Multidimensional Determinants , 1994 .
[18] F. S. Macaulay,et al. The Algebraic Theory of Modular Systems , 1972 .
[19] Bo Kågström,et al. RGSD an algorithm for computing the Kronecker structure and reducing subspaces of singular A-lB pencils , 1986 .
[20] Marie-Françoise Roy,et al. Multivariate Bezoutians, Kronecker symbol and Eisenbud-Levine formula , 1996 .
[21] Jean-Paul Cardinal,et al. Dualité et algorithmes itératifs pour la résolution de systèmes polynomiaux , 1993 .
[22] Jack Dongarra,et al. LAPACK: a portable linear algebra library for high-performance computers , 1990, SC.
[23] D. Grigor'ev,et al. Factorization of polynomials over a finite field and the solution of systems of algebraic equations , 1986 .
[24] P. Dooren,et al. An improved algorithm for the computation of Kronecker's canonical form of a singular pencil , 1988 .
[25] Alicia Dickenstein,et al. A global view of residues in the torus , 1997 .
[26] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[27] Bernard Mourrain,et al. Computer Algebra Methods for Studying and Computing Molecular Conformations , 1999, Algorithmica.
[28] Carlos A. Berenstein,et al. Residue Currents and Bezout Identities , 1993 .
[29] Carlos A. Berenstein,et al. Effective Bezout identities inQ[z1, ...,zn] , 1991 .
[30] B. Mourrain,et al. Algebraic Approach of Residues and Applications , 1996 .
[31] James Demmel,et al. The generalized Schur decomposition of an arbitrary pencil A–λB—robust software with error bounds and applications. Part II: software and applications , 1993, TOMS.
[32] B. Mourrain,et al. Some Applications of Bezoutians in Effective Algebraic Geometry , 1998 .
[33] F. S. Macaulay. Some Formulæ in Elimination , 1902 .
[34] Fabrice Rouillier,et al. Algorithmes efficaces pour l'etude des zeros reels des systemes polynomiaux , 1996 .
[35] James Renegar,et al. On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part III: Quantifier Elimination , 1992, J. Symb. Comput..
[36] H. Michael Möller. Systems of Algebraic Equations Solved by Means of Endomorphisms , 1993, AAECC.
[37] J. Maurice Rojas,et al. Toric Generalized Characteristic Polynomials , 1997, math/9702222.
[38] D. Eisenbud. Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .
[39] A. L. Dixon. The Eliminant of Three Quantics in two Independent Variables , 1909 .
[40] Dinesh Manocha,et al. Multipolynomial resultants and linear algebra , 1992, ISSAC '92.