Computing the Isolated Roots by Matrix Methods

Two main approaches are used, nowadays, to compute the roots of a zero-dimensional polynomial system. The first one involves Grobner basis computation, and applies to any zero-dimensional system. But, it is performed withexact arithmetic and, usually, large numbers appear during the computation. The other approach is based on resultant formulations and can be performed with floating point arithmetic. However, it applies only to generic situations, leading to singular problems in several systems coming from robotics and computational vision, for instance.In this paper, reinvestigating the resultant approach from the linear algebra point of view, we handle the problem of genericity and present a new algorithm for computing the isolated roots of an algebraic variety, not necessarily of dimension zero. We analyse two types of resultant formulations, transform them into eigenvector problems, and describe special linear algebra operations on the matrix pencils in order to reduce the root computation to a non-singular eigenvector problem. This new algorithm, based on pencil decompositions, has a good complexity even in the non-generic situations and can be executed with floating point arithmetic.

[1]  Deepak Kapur,et al.  Algebraic and geometric reasoning using Dixon resultants , 1994, ISSAC '94.

[2]  Michael Francis Atiyah,et al.  Introduction to commutative algebra , 1969 .

[3]  B. Mourrain,et al.  Solving special polynomial systems by using structured matrices and algebraic residues , 1997 .

[4]  Victor Y. Pan,et al.  Multidimensional structured matrices and polynomial systems , 1996 .

[5]  Uwe Storch,et al.  Über Spurfunktionen bei vollständigen Durchschnitten. , 1975 .

[6]  DemmelJames,et al.  The generalized Schur decomposition of an arbitrary pencil ABrobust software with error bounds and applications. Part II , 1993 .

[7]  Bernd Sturmfels,et al.  Product formulas for resultants and Chow forms , 1993 .

[8]  H. Stetter,et al.  An Elimination Algorithm for the Computation of All Zeros of a System of Multivariate Polynomial Equations , 1988 .

[9]  J. Jouanolou,et al.  Le formalisme du résultant , 1991 .

[10]  Daniel Lazard,et al.  Resolution des Systemes d'Equations Algebriques , 1981, Theor. Comput. Sci..

[11]  Ioannis Z. Emiris,et al.  On the Complexity of Sparse Elimination , 1996, J. Complex..

[12]  J. Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I , 1989 .

[13]  A. Chistov,et al.  Algorithm of polynomial complexity for factoring polynomials and finding the components of varieties in subexponential time , 1986 .

[14]  John F. Canny,et al.  Generalised Characteristic Polynomials , 1990, J. Symb. Comput..

[15]  Mohamed Elkadi,et al.  Approche effective des résidus algébriques , 1996 .

[16]  J. Canny,et al.  Efficient incremental algorithms for the sparse resultant and the mixed volume , 1995 .

[17]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[18]  F. S. Macaulay,et al.  The Algebraic Theory of Modular Systems , 1972 .

[19]  Bo Kågström,et al.  RGSD an algorithm for computing the Kronecker structure and reducing subspaces of singular A-lB pencils , 1986 .

[20]  Marie-Françoise Roy,et al.  Multivariate Bezoutians, Kronecker symbol and Eisenbud-Levine formula , 1996 .

[21]  Jean-Paul Cardinal,et al.  Dualité et algorithmes itératifs pour la résolution de systèmes polynomiaux , 1993 .

[22]  Jack Dongarra,et al.  LAPACK: a portable linear algebra library for high-performance computers , 1990, SC.

[23]  D. Grigor'ev,et al.  Factorization of polynomials over a finite field and the solution of systems of algebraic equations , 1986 .

[24]  P. Dooren,et al.  An improved algorithm for the computation of Kronecker's canonical form of a singular pencil , 1988 .

[25]  Alicia Dickenstein,et al.  A global view of residues in the torus , 1997 .

[26]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[27]  Bernard Mourrain,et al.  Computer Algebra Methods for Studying and Computing Molecular Conformations , 1999, Algorithmica.

[28]  Carlos A. Berenstein,et al.  Residue Currents and Bezout Identities , 1993 .

[29]  Carlos A. Berenstein,et al.  Effective Bezout identities inQ[z1, ...,zn] , 1991 .

[30]  B. Mourrain,et al.  Algebraic Approach of Residues and Applications , 1996 .

[31]  James Demmel,et al.  The generalized Schur decomposition of an arbitrary pencil A–λB—robust software with error bounds and applications. Part II: software and applications , 1993, TOMS.

[32]  B. Mourrain,et al.  Some Applications of Bezoutians in Effective Algebraic Geometry , 1998 .

[33]  F. S. Macaulay Some Formulæ in Elimination , 1902 .

[34]  Fabrice Rouillier,et al.  Algorithmes efficaces pour l'etude des zeros reels des systemes polynomiaux , 1996 .

[35]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part III: Quantifier Elimination , 1992, J. Symb. Comput..

[36]  H. Michael Möller Systems of Algebraic Equations Solved by Means of Endomorphisms , 1993, AAECC.

[37]  J. Maurice Rojas,et al.  Toric Generalized Characteristic Polynomials , 1997, math/9702222.

[38]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[39]  A. L. Dixon The Eliminant of Three Quantics in two Independent Variables , 1909 .

[40]  Dinesh Manocha,et al.  Multipolynomial resultants and linear algebra , 1992, ISSAC '92.