Geometric Characterization of Vines from 3D Point Clouds Obtained with Laser Scanner Systems

[1]  Joan Ramón Rosell Polo,et al.  A tractor-mounted scanning LIDAR for the non-destructive measurement of vegetative volume and surface area of tree-row plantations: A comparison with conventional destructive measurements , 2009 .

[2]  Wolfram Burgard,et al.  OctoMap: an efficient probabilistic 3D mapping framework based on octrees , 2013, Autonomous Robots.

[3]  J. Marois,et al.  Microclimates of grapevine canopies associated with leaf removal and control of Botrytis bunch rot , 1989 .

[4]  Yi Lin,et al.  From TLS to VLS: Biomass Estimation at Individual Tree Level , 2010, Remote. Sens..

[5]  D. Watson Comparative Physiological Studies on the Growth of Field Crops: I. Variation in Net Assimilation Rate and Leaf Area between Species and Varieties, and within and between Years , 1947 .

[6]  A. Escolà,et al.  Variable rate application of plant protection products in vineyard using ultrasonic sensors , 2007 .

[7]  J. Llorens,et al.  Relationship between tree row LIDAR-volume and leaf area density for fruit orchards and vineyards obtained with a LIDAR 3D Dynamic Measurement System , 2013 .

[8]  J. A. Martínez-Casasnovas,et al.  Mobile terrestrial laser scanner applications in precision fruticulture/horticulture and tools to extract information from canopy point clouds , 2016, Precision Agriculture.

[9]  Lammert Kooistra,et al.  Non-destructive tree volume estimation through quantitative structure modelling: Comparing UAV laser scanning with terrestrial LIDAR , 2019, Remote Sensing of Environment.

[10]  Zhen Wang,et al.  3D tree modeling from incomplete point clouds via optimization and L1-MST , 2017, Int. J. Geogr. Inf. Sci..

[11]  E. Lemon,et al.  The Effect of Concord Vineyard Microclimate on Yield. II. The Interrelations between Microclimate and Yield Expression , 1982, American Journal of Enology and Viticulture.

[12]  A. Escolà,et al.  Ultrasonic and LIDAR Sensors for Electronic Canopy Characterization in Vineyards: Advances to Improve Pesticide Application Methods , 2011, Sensors.

[13]  F. Baret,et al.  Optimal geometric configuration and algorithms for LAI indirect estimates under row canopies: The case of vineyards , 2009 .

[14]  Alessandro Matese,et al.  CrossVit: Enhancing Canopy Monitoring Management Practices in Viticulture , 2013, Sensors.

[15]  Bruno Tisseyre,et al.  Quality of Digital Elevation Models obtained from Unmanned Aerial Vehicles for Precision Viticulture , 2016 .

[16]  Kristian Kersting,et al.  Automated interpretation of 3D laserscanned point clouds for plant organ segmentation , 2015, BMC Bioinformatics.

[17]  David Hernández-López,et al.  Vineyard yield estimation by automatic 3D bunch modelling in field conditions , 2015, Comput. Electron. Agric..

[18]  G. Campbell,et al.  Simple equation to approximate the bidirectional reflectance from vegetative canopies and bare soil surfaces. , 1985, Applied optics.

[19]  Jordi Llorens,et al.  Georeferenced LiDAR 3D Vine Plantation Map Generation , 2011, Sensors.

[20]  Jenna Burrell,et al.  Vineyard computing: sensor networks in agricultural production , 2004, IEEE Pervasive Computing.

[21]  G. M. Richardson,et al.  IT—Information Technology and the Human Interface: Comparison of Different Spray Volume Deposition Models Using LIDAR Measurements of Apple Orchards , 2002 .

[22]  Peter R. Dry,et al.  Factors influencing grapevine vigour and the potential for control with partial rootzone drying , 1998 .

[23]  F. J. Pierce,et al.  An Automated Trailer Sprayer System for Targeted Control of Cutworm in Vineyards , 2011 .

[24]  Miguel Ángel Moreno,et al.  Characterization of Vitis vinifera L. Canopy Using Unmanned Aerial Vehicle-Based Remote Sensing and Photogrammetry Techniques , 2015, American Journal of Enology and Viticulture.

[25]  Frédéric Baret,et al.  Using 3D Point Clouds Derived from UAV RGB Imagery to Describe Vineyard 3D Macro-Structure , 2017, Remote. Sens..

[26]  Alexandre Escolà,et al.  Mapping Vineyard Leaf Area Using Mobile Terrestrial Laser Scanners: Should Rows be Scanned On-the-Go or Discontinuously Sampled? , 2016, Sensors.

[27]  R. Smart,et al.  Principles of Grapevine Canopy Microclimate Manipulation with Implications for Yield and Quality. A Review , 1985, American Journal of Enology and Viticulture.

[28]  Diego González-Aguilera,et al.  Comparing Terrestrial Laser Scanning (TLS) and Wearable Laser Scanning (WLS) for Individual Tree Modeling at Plot Level , 2018, Remote. Sens..

[29]  Donald Meagher,et al.  Geometric modeling using octree encoding , 1982, Comput. Graph. Image Process..

[30]  Adam J. Mathews,et al.  Visualizing and Quantifying Vineyard Canopy LAI Using an Unmanned Aerial Vehicle (UAV) Collected High Density Structure from Motion Point Cloud , 2013, Remote. Sens..

[31]  D. Raes,et al.  AquaCrop-The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles , 2009 .

[32]  K. Keightley Applying New Methods for Estimating in Vivo Vineyard Carbon Storage , 2011, American Journal of Enology and Viticulture.

[33]  Sébastien Bauwens,et al.  Forest Inventory with Terrestrial LiDAR: A Comparison of Static and Hand-Held Mobile Laser Scanning , 2016 .

[34]  K. Keightley,et al.  Original paper: 3D volumetric modeling of grapevine biomass using Tripod LiDAR , 2010 .

[35]  P. Tarolli,et al.  Vineyards in Terraced Landscapes: New Opportunities from Lidar Data , 2015 .

[36]  D. Smart,et al.  From berries to blocks: carbon stock quantification of a California vineyard , 2017, Carbon Balance and Management.

[37]  P. Nobel,et al.  Modeling of par interception and productivity by Opuntia ficus-indica , 1985 .

[38]  Jane Wilhelms,et al.  Octrees for faster isosurface generation , 1992, TOGS.

[39]  E. Lemon,et al.  The Effect of Concord Vineyard Microclimate on Yield. I. The Effects of Pruning, Training, and Shoot Positioning on Radiation Microclimate , 1982, American Journal of Enology and Viticulture.

[40]  P. Vivin,et al.  Allometric relationships to estimate seasonal above-ground vegetative and reproductive biomass of Vitis vinifera L. , 2002, Annals of botany.

[41]  J. R. Rosell-Polo,et al.  Leaf area index estimation in vineyards using a ground-based LiDAR scanner , 2013, Precision Agriculture.

[42]  J. F. Ortega,et al.  Estimation of leaf area index in onion (Allium cepa L.) using an unmanned aerial vehicle , 2013 .

[43]  Daniel Cohen-Or,et al.  L1-medial skeleton of point cloud , 2013, ACM Trans. Graph..