Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges

Cellulosic nanoparticles with high Young's modu- lus, crystallinity, specific surface area, and aspect ratio can be found in the natural structure of plant fibers. Indeed, lignocel- lulosic fibers consist of semicrystalline cellulose nanofibrils embedded in an amorphous matrix mainly composed of lignin and hemicelluloses. These nanostructures give the mechanical strength to higher plant cells, and are biodegradable, renew- able, resistant, and widely available to produce nanocompo- sites with low density, and improved and controlled mechanical, optical, and barrier properties. Nanoparticles can be extracted from cellulose using a top-down mechanically or chemically assisted deconstructing strategy, and owing to their highly reactive surface ensuing nanomaterials can be chemi- cally modified to tailor their properties for a wide range of applications. This review is limited to cellulose chemically extracted nanocrystals and aims to provide an overview about several aspects that involve this material, including sources, properties, challenges, and perspectives. V C 2014 Wiley Periodi- cals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014, 00, 000-000

[1]  S. Eichhorn,et al.  Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. , 2005, Biomacromolecules.

[2]  Kristiina Oksman,et al.  Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. , 2005, Biomacromolecules.

[3]  P. Chang,et al.  Starch-based nanocomposites reinforced with flax cellulose nanocrystals , 2008 .

[4]  Julien Bras,et al.  Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. , 2013, Carbohydrate polymers.

[5]  P. Zavattieri,et al.  Anisotropy of the elastic properties of crystalline cellulose Iβ from first principles density functional theory with Van der Waals interactions , 2013, Cellulose.

[6]  G. P. Johnson,et al.  Young’s modulus calculations for cellulose Iβ by MM3 and quantum mechanics , 2011 .

[7]  L. Mattoso,et al.  Obtaining nanocomposites of polyamide 6 and cellulose whiskers via extrusion and injection molding , 2014, Cellulose.

[8]  Wim Thielemans,et al.  Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites , 2006 .

[9]  W. Thielemans,et al.  Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). , 2009, Langmuir : the ACS journal of surfaces and colloids.

[10]  J. L. Colodette,et al.  A utilização de perácidos na deslignificação e no branqueamento de polpas celulósicas , 2001 .

[11]  A. Dufresne,et al.  Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. , 2009, Biomacromolecules.

[12]  D. Gray,et al.  Effect of Counterions on Ordered Phase Formation in Suspensions of Charged Rodlike Cellulose Crystallites , 1997 .

[13]  J. Sassi,et al.  Ultrastructural aspects of the acetylation of cellulose , 1995 .

[14]  P. Chang,et al.  Effects of polymer‐grafted natural nanocrystals on the structure and mechanical properties of poly(lactic acid): A case of cellulose whisker‐graft‐polycaprolactone , 2009 .

[15]  S. Eichhorn,et al.  Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using Raman spectroscopy , 2008 .

[16]  Xuefei Zhang,et al.  A novel amphotropic polymer based on cellulose nanocrystals grafted with azo polymers , 2008 .

[17]  D. Gray,et al.  Surface grafting of cellulose nanocrystals with poly(ethylene oxide) in aqueous media. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[18]  L. Mattoso,et al.  Electrically conductive nanocomposites made from cellulose nanofibrils and polyaniline. , 2009, Journal of nanoscience and nanotechnology.

[19]  A. Dufresne,et al.  Supramolecular hydrogels from in situ host-guest inclusion between chemically modified cellulose nanocrystals and cyclodextrin. , 2013, Biomacromolecules.

[20]  Severian Dumitriu,et al.  Polysaccharides : structural diversity and functional versatility , 1998 .

[21]  Alain Dufresne,et al.  Nanocellulose: From Nature to High Performance Tailored Materials , 2012 .

[22]  J. Brickmann,et al.  Theoretical investigations on the structure and physical properties of cellulose , 1995 .

[23]  O. Ikkala,et al.  Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization. , 2011, Biomacromolecules.

[24]  A. Martini,et al.  Crystalline cellulose elastic modulus predicted by atomistic models of uniform deformation and nanoscale indentation , 2013, Cellulose.

[25]  K. Sheng,et al.  Effect of low‐concentration alkali solution pretreatment on the properties of bamboo particles reinforced poly(lactic acid) composites , 2013 .

[26]  Alain Dufresne,et al.  Mechanical Performance and Transparency of Nanocellulose Reinforced Polymer Nanocomposites , 2014 .

[27]  Véronique Favier,et al.  Nanocomposite materials from latex and cellulose whiskers , 1995 .

[28]  K. Tashiro,et al.  Calculation of crystallite modulus of native cellulose , 1985, Polymer Bulletin.

[29]  M. Rosa,et al.  Edible films from alginate-acerola puree reinforced with cellulose whiskers , 2012 .

[30]  J. Lagarón,et al.  On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid , 2010 .

[31]  Julien Bras,et al.  Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly(lactide) based bionanocomposites , 2013 .

[32]  J. Kroon,et al.  Chain modulus and intramolecular hydrogen bonding in native and regenerated cellulose fibers , 1986 .

[33]  Monique Lacroix,et al.  Production and properties of nanocellulose-reinforced methylcellulose-based biodegradable films. , 2010, Journal of agricultural and food chemistry.

[34]  E. M. Teixeira,et al.  Whiskers de fibra de sisal obtidos sob diferentes condições de hidrólise ácida: efeito do tempo e da temperatura de extração , 2011 .

[35]  A. Dufresne,et al.  Investigation on the effect of cellulosic nanoparticles’ morphology on the properties of natural rubber based nanocomposites , 2010 .

[36]  Qinglin Wu,et al.  Starch composites reinforced by bamboo cellulosic crystals. , 2010, Bioresource technology.

[37]  Masaru Matsuo,et al.  Effect of orientation distribution and crystallinity on the measurement by x-ray diffraction of the crystal lattice moduli of cellulose I and II , 1990 .

[38]  K. Nakamae,et al.  Elastic modulus of the crystalline regions of cellulose polymorphs , 1995 .

[39]  F. Morehead,et al.  Liquid Crystal Systems from Fibrillar Polysaccharides , 1959, Nature.

[40]  Margaret J. Sobkowicz,et al.  Decorating in green: surface esterification of carbon and cellulosic nanoparticles , 2009 .

[41]  A. Hult,et al.  Hybrid rigid/soft and biologic/synthetic materials: polymers grafted onto cellulose microcrystals. , 2011, Biomacromolecules.

[42]  A. Dufresne,et al.  Shear-Induced Orientation Phenomena in Suspensions of Cellulose Microcrystals, Revealed by Small Angle X-ray Scattering , 1999 .

[43]  J. Mann,et al.  X-ray measurements of the elastic modulus of cellulose crystals , 1962 .

[44]  John Simonsen,et al.  Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes , 2008 .

[45]  Masamichi Kobayashi,et al.  THEORETICAL EVALUATION OF THREE-DIMENSIONAL ELASTIC CONSTANTS OF NATIVE AND REGENERATED CELLULOSES : ROLE OF HYDROGEN BONDS , 1991 .

[46]  L. Berglund,et al.  Thermal response in crystalline Ibeta cellulose: a molecular dynamics study. , 2007, The journal of physical chemistry. B.

[47]  P. Dubois,et al.  Surface-modification of cellulose nanowhiskers and their use as nanoreinforcers into polylactide: A sustainably-integrated approach , 2012 .

[48]  A. Dufresne,et al.  Physical and/or Chemical Compatibilization of Extruded Cellulose Nanocrystal Reinforced Polystyrene Nanocomposites , 2013 .

[49]  L. Mattoso,et al.  Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. , 2009, Journal of food science.

[50]  J. Capadona,et al.  Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. , 2007, Biomacromolecules.

[51]  Stuart J. Rowan,et al.  Water-Triggered Modulus Changes of Cellulose Nanofiber Nanocomposites with Hydrophobic Polymer Matrices , 2012 .

[52]  A. Dufresne,et al.  Water sorption behavior and gas barrier properties of cellulose whiskers and microfibrils films , 2011 .

[53]  Qi Zhou,et al.  Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA) – Crystallization and mechanical property effects , 2010 .

[54]  A. Dufresne,et al.  High reinforcing capability cellulose nanocrystals extracted from Syngonanthus nitens (Capim Dourado) , 2010 .

[55]  S. Eichhorn,et al.  Modelling the crystalline deformation of native and regenerated cellulose , 2006 .

[56]  M. Gonçalves,et al.  Surface modification of cotton nanocrystals with a silane agent , 2013, Cellulose.

[57]  A. Dufresne,et al.  Correlation between stiffness of sheets prepared from cellulose whiskers and nanoparticles dimensions , 2011 .

[58]  B. Rånby,et al.  Aqueous Colloidal Solutions of Cellulose Micelles. , 1949 .

[59]  Alain Dufresne,et al.  Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch , 2009 .

[60]  Xiaodong Cao,et al.  One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites , 2009 .

[61]  Stuart J. Rowan,et al.  Bio-inspired mechanically-adaptive nanocomposites derived from cotton cellulose whiskers , 2010 .

[62]  B. Hsiao,et al.  Ultrafine polysaccharide nanofibrous membranes for water purification. , 2011, Biomacromolecules.

[63]  A. Dufresne Processing of Polymer Nanocomposites Reinforced with Cellulose Nanocrystals: A Challenge , 2012 .

[64]  Alain Dufresne,et al.  Simple Method for the Melt Extrusion of a Cellulose Nanocrystal Reinforced Hydrophobic Polymer. , 2012, ACS macro letters.

[65]  W. Thielemans,et al.  Permselective nanostructured membranes based on cellulose nanowhiskers , 2009 .

[66]  Pierre Blanchet,et al.  Nanocrystalline Cellulose: Morphological, Physical, and Mechanical Properties , 2011 .

[67]  W. Winter,et al.  Nanocomposites of Cellulose Acetate Butyrate Reinforced with Cellulose Nanocrystals , 2002 .

[68]  Mohamed A. Abdelwahab,et al.  Incorporation of poly(glycidylmethacrylate) grafted bacterial cellulose nanowhiskers in poly(lactic acid) nanocomposites: Improved barrier and mechanical properties , 2013 .

[69]  Tara H McHugh,et al.  Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. , 2010, Journal of food science.

[70]  A. Dufresne,et al.  Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites , 2009 .

[71]  G. Maret,et al.  Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation , 1994 .

[72]  D. Tyler,et al.  Stimuli-Responsive Polymer Nanocomposites Inspired by the Sea Cucumber Dermis , 2008, Science.

[73]  Youssef Habibi,et al.  Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. , 2008, Biomacromolecules.

[74]  V. Skirda,et al.  Macromolecule self-diffusion in poly(ethylene glycol) melts , 1986 .

[75]  K. Meyer,et al.  Sur l'élasticité de la cellulose. (Sur la constitution de la partie cristallisée de la cellulose IV) , 1936 .

[76]  Erik K. Hobbie,et al.  Nanoparticles as macromolecules , 2013 .

[77]  Shawn Decker,et al.  Nanocrystals as Stoichiometric Reagents with Unique Surface Chemistry , 1996 .

[78]  J. Ganster,et al.  NpH-MD-Simulations of the Elastic Moduli of Cellulose II at Room Temperatue , 1996 .

[79]  H. Althues,et al.  Functional inorganic nanofillers for transparent polymers. , 2007, Chemical Society reviews.

[80]  J. P. de Mesquita,et al.  Bio-based nanocomposites obtained through covalent linkage between chitosan and cellulose nanocrystals. , 2012, Carbohydrate Polymers.

[81]  Ichiro Sakurada,et al.  Experimental determination of the elastic modulus of crystalline regions in oriented polymers , 1962 .

[82]  M. Kamal,et al.  Effect of surface energy on dispersion and mechanical properties of polymer/nanocrystalline cellulose nanocomposites. , 2013, Biomacromolecules.

[83]  P. Dubois,et al.  From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. , 2011, Biomacromolecules.

[84]  L. Lucia,et al.  Cellulose nanocrystals: chemistry, self-assembly, and applications. , 2010, Chemical reviews.

[85]  Francesc Ferrando,et al.  Kraft lignin behavior during reaction in an alkaline medium , 2011 .

[86]  P. Chang,et al.  Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: Effect of hydrolysis time , 2009 .

[87]  Xuefei Zhang,et al.  Temperature-induced chiral nematic phase changes of suspensions of poly(N,N-dimethylaminoethyl methacrylate)-grafted cellulose nanocrystals , 2009 .

[88]  P. Dubois,et al.  Poly(ɛ-caprolactone) based nanocomposites reinforced by surface-grafted cellulose nanowhiskers via extrusion processing: Morphology, rheology, and thermo-mechanical properties , 2011 .

[89]  A. Dufresne,et al.  Plasticized Starch/Tunicin Whiskers Nanocomposites. 1. Structural Analysis , 2000 .

[90]  P. Dubois,et al.  Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization , 2008 .

[91]  Stuart J. Rowan,et al.  Bioinspired Mechanically Adaptive Polymer Nanocomposites with Water-Activated Shape-Memory Effect , 2011 .

[92]  R. Venditti,et al.  Reinforcing poly(epsilon-caprolactone) nanofibers with cellulose nanocrystals. , 2009, ACS applied materials & interfaces.

[93]  Enyong Ding,et al.  Surface modification of cellulose nanocrystals , 2007 .

[94]  C. Weder,et al.  Solid polymer electrolytes based on nanocomposites of ethylene oxide–epichlorohydrin copolymers and cellulose whiskers , 2004 .

[95]  D. Gray,et al.  Effects of Ionic Strength on the Isotropic−Chiral Nematic Phase Transition of Suspensions of Cellulose Crystallites , 1996 .

[96]  Michael Krisch,et al.  Anisotropic Elastic Properties of Cellulose Measured Using Inelastic X-ray Scattering , 2008 .

[97]  A. Dufresne,et al.  Preparation of Cellulose Whiskers Reinforced Nanocomposites from an Organic Medium Suspension , 2004 .

[98]  A. Ragauskas,et al.  Moisture barrier properties of xylan composite films , 2011 .

[99]  Maya Jacob John,et al.  Biofibres and Biocomposites , 2008 .

[100]  Xiaodong Cao,et al.  Morphological, thermal and mechanical properties of ramie crystallites—reinforced plasticized starch biocomposites , 2006 .

[101]  D. Harper,et al.  Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions. , 2009, Macromolecular bioscience.

[102]  A. Dufresne Comparing the mechanical properties of high performances polymer nanocomposites from biological sources. , 2006, Journal of nanoscience and nanotechnology.

[103]  P. Chang,et al.  Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid) , 2011 .

[104]  H. Chanzy,et al.  Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents , 2002 .

[105]  C. Mirkin,et al.  Nanotechnology research directions for societal needs in 2020: summary of international study , 2011 .

[106]  Shigenori Kuga,et al.  Surface acylation of cellulose whiskers by drying aqueous emulsion. , 2006, Biomacromolecules.

[107]  T. Iwata,et al.  Estimation of the Elastic Modulus of Cellulose Crystal by Molecular Mechanics Simulation , 2006 .

[108]  Frank A. Müller,et al.  Antimicrobial porous hybrids consisting of bacterial nanocellulose and silver nanoparticles , 2013, Cellulose.

[109]  Lihui Weng,et al.  Biocomposites of plasticized starch reinforced with cellulose crystallites from cottonseed linter. , 2005, Macromolecular bioscience.

[110]  Stuart J. Rowan,et al.  Stimuli-responsive mechanically adaptive polymer nanocomposites. , 2010, ACS applied materials & interfaces.

[111]  A. Dufresne,et al.  New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[112]  J. Dorgan,et al.  Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers. , 2009, Biomacromolecules.

[113]  L. Heux,et al.  Nonflocculating and Chiral-Nematic Self-ordering of Cellulose Microcrystals Suspensions in Nonpolar Solvents , 2000 .

[114]  A. Dufresne,et al.  Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. , 2002, Biomacromolecules.

[115]  Véronique Favier,et al.  Polymer Nanocomposites Reinforced by Cellulose Whiskers , 1995 .

[116]  Stephanie Beck,et al.  Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. , 2011, Biomacromolecules.

[117]  Stuart J. Rowan,et al.  Biomimetic mechanically adaptive nanocomposites , 2010 .

[118]  A. Dufresne,et al.  Water transport properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals , 2013 .

[119]  R. Dendievel,et al.  Viscoelastic properties of plasticized PVC reinforced with cellulose whiskers , 1999 .

[120]  D G Gray,et al.  Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. , 1992, International journal of biological macromolecules.

[121]  J. Araki,et al.  Steric Stabilization of a Cellulose Microcrystal Suspension by Poly(ethylene glycol) Grafting , 2001 .

[122]  Hl. de Vries Rotatory power and other optical properties of certain liquid crystals , 1951 .

[123]  Akira Isogai,et al.  Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. , 2009, Biomacromolecules.

[124]  Lina Zhang,et al.  Effects of cellulose whiskers on properties of soy protein thermoplastics. , 2006, Macromolecular bioscience.

[125]  L. Treloar Calculations of elastic moduli of polymer crystals: III. Cellulose , 1960 .

[126]  John Simonsen,et al.  Cellulose nanocrystal-filled carboxymethyl cellulose nanocomposites. , 2006, Journal of nanoscience and nanotechnology.

[127]  B. Maigret,et al.  A new all-atom force field for crystalline cellulose I , 2000 .

[128]  J. Putaux,et al.  Preparation by grafting onto, characterization, and properties of thermally responsive polymer-decorated cellulose nanocrystals. , 2010, Biomacromolecules.

[129]  J. Kardos,et al.  Moduli of Crystalline Polymers Employing Composite Theory , 1972 .

[130]  S. Atre,et al.  Nano-enabled microtechnology: polysulfone nanocomposites incorporating cellulose nanocrystals , 2007 .

[131]  Mark Stumborg,et al.  Green composites reinforced with hemp nanocrystals in plasticized starch , 2008 .

[132]  L. Heux,et al.  Gas-phase surface esterification of cellulose microfibrils and whiskers. , 2009, Biomacromolecules.

[133]  C. Crestini,et al.  Oxidative strategies in lignin chemistry: A new environmental friendly approach for the functionalisation of lignin and lignocellulosic fibers , 2010 .

[134]  Xuefei Zhang,et al.  Chiral-nematic self-ordering of rodlike cellulose nanocrystals grafted with poly(styrene) in both thermotropic and lyotropic states , 2008 .

[135]  Peter Josefsson,et al.  Nanoscale cellulose films with different crystallinities and mesostructures--their surface properties and interaction with water. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[136]  M. Lacroix,et al.  Mechanical and barrier properties of nanocrystalline cellulose reinforced poly(caprolactone) composites: Effect of gamma radiation , 2013 .

[137]  Alain Dufresne,et al.  Nanocellulose: a new ageless bionanomaterial , 2013 .

[138]  A. Dufresne,et al.  Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites , 2010 .

[139]  A. Dufresne,et al.  Synergism Effect of Montmorillonite and Cellulose Whiskers on the Mechanical and Barrier Properties of Natural Rubber Composites , 2011 .

[140]  Douglas Henrique Milanez,et al.  Assessing nanocellulose developments using science and technology indicators , 2013 .