Some Ramsey Schur Numbers
暂无分享,去创建一个
The Ramsey Schur number $RS(s,t)$ is the smallest $n$ such that every 2-colouring of the edges of $K_n$ with vertices $1,2,\ldots,n$ contains a green $K_s$ or there are vertices $x_1,x_2,\ldots,x_t$ fulfilling the equation $x_1+x_2+\cdots+x_{t-1}=x_t$ and all edges $(x_i,x_j)$ are red. We prove $RS(3,3)=11, RS(3,t)=t^2-3$ for $t\equiv1\ (\mbox{mod}\ 6)$ and $t=8$, and $RS(3,t)\geq t^2-3$.
[1] Vojtech Rödl,et al. Independent Arithmetic Progressions in Clique-Free Graphs on the Natural Numbers , 2001, J. Comb. Theory, Ser. A.
[2] Vojtech Rödl,et al. Independent finite sums in graphs defined on the natural numbers , 1998, Discret. Math..
[3] P. Erdös,et al. On a metric generalization of ramsey’s theorem , 1995 .
[4] Neil Hindman,et al. Independent Finite Sums forKm-Free Graphs , 1997, J. Comb. Theory, Ser. A.