Some Ramsey Schur Numbers

The Ramsey Schur number $RS(s,t)$ is the smallest $n$ such that every 2-colouring of the edges of $K_n$ with vertices $1,2,\ldots,n$ contains a green $K_s$ or there are vertices $x_1,x_2,\ldots,x_t$ fulfilling the equation $x_1+x_2+\cdots+x_{t-1}=x_t$ and all edges $(x_i,x_j)$ are red. We prove $RS(3,3)=11, RS(3,t)=t^2-3$ for $t\equiv1\ (\mbox{mod}\ 6)$ and $t=8$, and $RS(3,t)\geq t^2-3$.