A More Flexible Bayesian Multilevel Bifactor Item Response Theory Model

[1]  Christine E. DeMars A Tutorial on Interpreting Bifactor Model Scores , 2013 .

[2]  J. Varni,et al.  Bayesian Estimation of Graded Response Multilevel Models Using Gibbs Sampling: Formulation and Illustration , 2010 .

[3]  Ken A. Fujimoto,et al.  A general Bayesian multilevel multidimensional IRT model for locally dependent data , 2018, The British journal of mathematical and statistical psychology.

[4]  Jean-Paul Fox,et al.  Relaxing Measurement Invariance in Cross-National Consumer Research Using a Hierarchical IRT Model , 2007 .

[5]  Michael D. Toland,et al.  Introduction to bifactor polytomous item response theory analysis. , 2017, Journal of school psychology.

[6]  Ken A. Fujimoto,et al.  The Bayesian Multilevel Trifactor Item Response Theory Model , 2018, Educational and psychological measurement.

[7]  Robert J. Sampson,et al.  6. A Multivariate, Multilevel Rasch Model with Application to Self-Reported Criminal Behavior , 2003 .

[8]  Francesco Bartolucci,et al.  Dimensionality of the Latent Structure and Item Selection Via Latent Class Multidimensional IRT Models , 2012, Psychometrika.

[9]  R. Dedrick,et al.  A Multilevel Bifactor Approach to Construct Validation of Mixed-Format Scales , 2018, Educational and psychological measurement.

[10]  Moritz Heene,et al.  Anomalous Results in G-Factor Models: Explanations and Alternatives , 2017, Psychological methods.

[11]  Noah Kaplan,et al.  Practical Issues in Implementing and Understanding Bayesian Ideal Point Estimation , 2005, Political Analysis.

[12]  Jean-Paul Fox,et al.  Bayesian Item Response Modeling , 2010 .

[13]  Akihito Kamata,et al.  A Multilevel Testlet Model for Dual Local Dependence , 2012 .

[14]  E. Muraki A Generalized Partial Credit Model: Application of an EM Algorithm , 1992 .

[15]  S. West,et al.  A Comparison of Bifactor and Second-Order Models of Quality of Life , 2006, Multivariate behavioral research.

[16]  Y. Zhang,et al.  Polytomous multilevel testlet models for testlet-based assessments with complex sampling designs. , 2015, The British journal of mathematical and statistical psychology.

[17]  Akihito Kamata,et al.  Item Analysis by the Hierarchical Generalized Linear Model. , 2001 .

[18]  S. Chib,et al.  Analysis of multivariate probit models , 1998 .

[19]  Gareth O. Roberts,et al.  Examples of Adaptive MCMC , 2009 .

[20]  Frank Rijmen,et al.  Efficient Full Information Maximum Likelihood Estimation for Multidimensional IRT Models. Research Report. ETS RR-09-03. , 2009 .

[21]  Sun-Joo Cho,et al.  Detecting Differential Item Discrimination (DID) and the Consequences of Ignoring DID in Multilevel Item Response Models. , 2017 .

[22]  Yanyan Sheng,et al.  BAYESIAN IRT MODELS INCORPORATING GENERAL AND SPECIFIC ABILITIES , 2009 .

[23]  R. D. Bock,et al.  Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm , 1981 .

[24]  Raymond J. Adams,et al.  Multilevel Item Response Models: An Approach to Errors in Variables Regression , 1997 .

[25]  K. Holzinger,et al.  The Bi-factor method , 1937 .

[26]  Bengt Muthén,et al.  Multilevel Factor Analysis of Class and Student Achievement Components , 1991 .

[27]  Li Cai,et al.  Generalized full-information item bifactor analysis. , 2011, Psychological methods.

[28]  Donald Hedeker,et al.  Full-Information Item Bifactor Analysis of Graded Response Data , 2007 .

[29]  S. Reise The Rediscovery of Bifactor Measurement Models , 2012 .

[30]  D. Thissen,et al.  Local Dependence Indexes for Item Pairs Using Item Response Theory , 1997 .

[31]  Akihito Kamata,et al.  A Bifactor Multidimensional Item Response Theory Model for Differential Item Functioning Analysis on Testlet-Based Items , 2011 .

[32]  Raymond J. Adams,et al.  Rasch models for item bundles , 1995 .