A SiGe BiCMOS Transmitter/Receiver Chipset With On-Chip SIW Antennas for Terahertz Applications

This paper presents a terahertz (THz) transmitter (Tx) and receiver (Rx) chipset operating around 400 GHz in 0.13- μm SiGe BiCMOS technology. The Tx chip consists of a voltage-controlled oscillator, a buffer, a modulator, a power amplifier, a frequency tripler, and a substrate integrated waveguide (SIW) antenna. This antenna has an additional high-pass filtering characteristic to suppress the unwanted fundamental (f0) and second harmonic (2f0) signals by 50 and 30 dB, respectively. The Rx chip includes a proposed reconfigurable SIW antenna and a novel two-mode subharmonic mixer with ~ 5-dB reduction of conversion loss. The Rx chip consumes 50 nA from a 1.2-V supply. The measurement results of the Tx and Rx chips and a back-to-back test of the Tx/Rx chipset show the feasibility and pave the way of implementing a fully integrated THz system in silicon technology for mass production.

[1]  Mingquan Bao,et al.  A 9–31-GHz Subharmonic Passive Mixer in 90-nm CMOS Technology , 2006 .

[2]  Mau-Chung Frank Chang,et al.  Terahertz CMOS Frequency Generator Using Linear Superposition Technique , 2008, IEEE Journal of Solid-State Circuits.

[3]  Ehsan Afshari,et al.  High Power Terahertz and Millimeter-Wave Oscillator Design: A Systematic Approach , 2011, IEEE Journal of Solid-State Circuits.

[4]  Peter de Maagt,et al.  Terahertz Science, Engineering and Systems—from Space to Earth Applications , 2005 .

[5]  Yong-Zhong Xiong,et al.  A 434GHz SiGe BiCMOS transmitter with an on-chip SIW slot antenna , 2011, IEEE Asian Solid-State Circuits Conference 2011.

[6]  Ruonan Han,et al.  Progress and Challenges Towards Terahertz CMOS Integrated Circuits , 2010, IEEE Journal of Solid-State Circuits.

[7]  Yan Zhao,et al.  A 820GHz SiGe chipset for terahertz active imaging applications , 2011, 2011 IEEE International Solid-State Circuits Conference.

[8]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[9]  N. Llombart,et al.  Penetrating 3-D Imaging at 4- and 25-m Range Using a Submillimeter-Wave Radar , 2008, IEEE Transactions on Microwave Theory and Techniques.

[10]  G. Si,et al.  Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer , 2012 .

[11]  Choonsup Lee,et al.  A Frequency-Multiplied Source With More Than 1 mW of Power Across the 840–900-GHz Band , 2010, IEEE Transactions on Microwave Theory and Techniques.

[12]  K. Fukunaga,et al.  A Survey of Terahertz Applications in Cultural Heritage Conservation Science , 2011, IEEE Transactions on Terahertz Science and Technology.

[13]  Y. Baeyens,et al.  Semiconductor technologies for higher frequencies , 2009, IEEE Microwave Magazine.

[14]  A. Tomkins,et al.  Nanoscale CMOS Transceiver Design in the 90–170-GHz Range , 2009, IEEE Transactions on Microwave Theory and Techniques.

[15]  Ke Wu Substrate Integrated Circuits (SICs) for Terahertz Electronics and Photonics: Current Status and Future Outlook , 2010, German Microwave Conference Digest of Papers.

[16]  Ullrich R. Pfeiffer,et al.  Terahertz imaging with CMOS/BiCMOS process technologies , 2010, 2010 Proceedings of ESSCIRC.

[17]  Li Yan,et al.  Simulation and experiment on SIW slot array antennas , 2004 .

[18]  Behzad Razavi,et al.  A 300-GHz Fundamental Oscillator in 65-nm CMOS Technology , 2010, IEEE Journal of Solid-State Circuits.

[19]  Ke Wu,et al.  Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide , 2006, IEEE Transactions on Microwave Theory and Techniques.