Dynamics of a solar thermochemical reactor for steam-reforming of methane

Abstract A nonlinear dynamic model is developed for a steam/methane-reforming reactor that uses concentrated solar radiation as the source of high-temperature process heat. The model incorporates a set of lumped-parameter reservoirs for mass and energy. For each reservoir, the unsteady mass and energy conservation equations are formulated, which couple conduction, convection, and radiation heat transfer with the temperature dependent chemical conversion. Radiative exchange, the dominant heat transfer mode at above 800 K, is solved by a band-approximation Monte Carlo technique. The dynamic model is applied to predict the transient behavior of a 400 kW prototype solar reformer in operational modes of purging, thermal testing, startup, chemical reaction, shutdown, and cyclical operation. Time constants vary between 2 s for species transport and 1 × 10 5 s for thermal energy transport through ceramic insulation. Validation is accomplished by comparing modeled and experimentally measured outlet gas temperatures obtained from reactor tests in a solar tower facility.

[1]  Reiner Buck,et al.  Solar Production of Syngas for Electricity Generation: SOLASYS Project Test-Phase , 2002 .

[2]  Xiugan Yuan,et al.  Energy analysis of space solar dynamic heat receivers , 2003 .

[3]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[4]  T. Kodama,et al.  CO2 Reforming of Methane in a Molten Carbonate Salt Bath for Use in Solar Thermochemical Processes , 2001 .

[5]  A. Steinfeld Solar thermochemical production of hydrogen--a review , 2005 .

[6]  Gregory S. Jackson,et al.  Transient modeling of combined catalytic combustion/CH4 steam reforming , 2003 .

[7]  C. Maffezzoni,et al.  Dynamic analysis and control of a solar power plant—II. Control system design and simulation , 1982 .

[8]  S. C. Kaushik,et al.  Dynamic simulation of an aqua-ammonia absorption cooling system with refrigerant storage , 1991 .

[9]  C. Maffezzoni,et al.  Dynamic analysis and control of a solar power plant—I Dynamic analysis and operation criteria , 1982 .

[10]  Van Vlack,et al.  Physical ceramics for engineers , 1964 .

[11]  Kazuhiko Kudo,et al.  Radiative heat transfer by the Monte Carlo method , 1995 .

[12]  Asok Ray,et al.  Dynamic modelling of once-through subcritical steam generator for solar applications11This work was done while the author was at Carnegie-Mellon University, Pittsburgh, PA, USA , 1980 .

[13]  M. Levy,et al.  Methane reforming by direct solar irradiation of the catalyst , 1992 .

[14]  A Chaabene,et al.  A dynamic model for predicting solar plant performance and optimum control , 1997 .

[15]  Antje Wörner,et al.  CO2 reforming of methane in a solar driven volumetric receiver–reactor , 1998 .

[16]  R. D. Skocypec,et al.  A direct absorber reactor/receiver for solar thermal applications , 1990 .

[17]  J. Richardson,et al.  Carbon dioxide reforming of methane with supported rhodium , 1990 .

[18]  M. Levy,et al.  Chemical Reactions in a Solar Furnace by Direct Solar Irradiation of the Catalyst , 1989 .

[19]  David P. DeWitt,et al.  Thermal Radiative Properties , 1972 .

[20]  J. Buzás,et al.  Modelling and simulation aspects of a solar hot water system , 1998 .

[21]  Reiner Buck Massenstrom-Instabilitäten bei volumetrischen Receiver-Reaktoren , 2000 .

[22]  William L. Luyben,et al.  Process Modeling, Simulation and Control for Chemical Engineers , 1973 .

[23]  Shahab Sokhansanj,et al.  A dynamic performance simulation model of flat-plate solar collectors for a heat pump system , 1993 .

[24]  M. F. El-Refaie,et al.  Reduced order dynamic model of the flat-plate solar collector , 1983 .

[25]  Martin A. Reno,et al.  Coefficients for calculating thermodynamic and transport properties of individual species , 1993 .

[26]  J. D. Felske,et al.  Radiation Heat Transfer: A Statistical Approach , 2002 .

[27]  S. Kaushik,et al.  Dynamic simulation of an ammonia-water absorption cycle solar heat pump with integral refrigerant storage , 1985 .

[28]  B. Bequette Process Dynamics: Modeling, Analysis and Simulation , 1998 .

[29]  N. Gokon,et al.  Methane reforming with CO2 in molten salt using FeO catalyst , 2002 .

[30]  A. Steinfeld,et al.  Dry Reforming of Methane Using a Solar-Thermal Aerosol Flow Reactor , 2004 .

[31]  P. Lettieri,et al.  An introduction to heat transfer , 2007 .

[32]  Reiner Buck,et al.  Development of a Volumetric Receiver-Reactor For Solar Methane Reforming , 1994 .

[33]  Reiner Buck,et al.  Carbon Dioxide Reforming of Methane in a Solar Volumetric Receiver-Reactor: The CAESAR Project. , 1991 .

[34]  Reiner Buck,et al.  Solar Upgrading of Fuels for Generation of Electricity , 2001 .

[35]  B. Bequette,et al.  Process Control: Modeling, Design and Simulation , 2003 .

[36]  A. Ray Nonlinear dynamic model of a solar steam generator , 1981 .

[37]  Y. S. Touloukian Thermophysical properties of matter , 1970 .

[38]  A. J. de Ron,et al.  Dynamic modelling and verification of a flat-plate solar collector , 1980 .

[39]  Sanford Gordon,et al.  Computer program for calculation of complex chemical equilibrium compositions , 1972 .

[40]  Moh’d A. Al-Nimr,et al.  Dynamic behaviour of baffled solar air heaters , 1998 .

[41]  J. Mathiak,et al.  Dynamics of H2 production by steam reforming , 2004 .