Finite element simulation of radiation losses in photonic crystal fibers

In our work we focus on the accurate computation of light propagation in finite size photonic crystal structures with the finite element method (FEM). We discuss how we utilize numerical concepts like high-order finite elements, transparent boundary conditions and goal-oriented error estimators for adaptive grid refinement in order to compute radiation leakage in photonic crystal fibers and waveguides. Due to the fast convergence of our method we can use it e.g. to optimize the design of photonic crystal structures with respect to geometrical parameters, to minimize radiation losses and to compute attenutation spectra for different geometries. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  P. Russell Photonic Crystal Fibers , 2003, Science.

[2]  Dominique Pagnoux,et al.  Complete Analysis of the Characteristics of Propagation into Photonic Crystal Fibers, by the Finite Element Method , 2000 .

[3]  S. Burger,et al.  Goal oriented adaptive finite element method for precise simulation of optical components , 2007, SPIE OPTO.

[4]  V Sandoghdar,et al.  Optical microscopy via spectral modifications of a nanoantenna. , 2005, Physical review letters.

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  F Benabid,et al.  Large-pitch kagome-structured hollow-core photonic crystal fiber. , 2006, Optics letters.

[7]  S. Burger,et al.  JCMmode: an adaptive finite element solver for the computation of leaky modes , 2005, SPIE OPTO.

[8]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[9]  S. Selleri,et al.  Holey fiber analysis through the finite-element method , 2002, IEEE Photonics Technology Letters.

[10]  Roland Klose,et al.  Numerical investigation of light scattering off split-ring resonators , 2005, SPIE Optics + Optoelectronics.

[11]  S. Burger,et al.  FEM modeling of 3D photonic crystals and photonic crystal waveguides , 2005, SPIE OPTO.

[12]  Sven Burger,et al.  Optical microscopy using the spectral modifications of a nano-antenna , 2005 .

[13]  Ronald Holzlöhner,et al.  Efficient optimization of hollow-core photonic crystal fiber design using the finite-element method , 2006 .

[14]  S. Burger,et al.  Photonic Metamaterials: Magnetism at Optical Frequencies , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  Knight,et al.  Single-Mode Photonic Band Gap Guidance of Light in Air. , 1999, Science.

[16]  J. Broeng,et al.  Photonic crystal fibers , 2003, Proceedings of the 2003 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference - IMOC 2003. (Cat. No.03TH8678).

[17]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[18]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[19]  Frank Schmidt,et al.  Adaptive FEM Solver for the Computation of Electromagnetic Eigenmodes in 3D Photonic Crystal Structures , 2006 .

[20]  Dirk Michaelis,et al.  Planar High Index‐Contrast Photonic Crystals for Telecom Applications , 2006 .

[21]  F. Benabid,et al.  Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber , 2002, Science.

[22]  Ronald Holzlöhner,et al.  FEM investigation of leaky modes in hollow core photonic crystal fibers , 2007, SPIE OPTO.

[23]  F Schmidt,et al.  Magnetic metamaterials at telecommunication and visible frequencies. , 2005, Physical review letters.