EOS: An efficient obstacle segmentation for blind guiding

[1]  Fagui Liu,et al.  EPRNet: Efficient Pyramid Representation Network for Real-Time Street Scene Segmentation , 2022, IEEE Transactions on Intelligent Transportation Systems.

[2]  Ragib Hasan,et al.  Pedestrian safety using the Internet of Things and sensors: Issues, challenges, and open problems , 2022, Future Gener. Comput. Syst..

[3]  Siping Liu,et al.  Deep neural networks with attention mechanism for monocular depth estimation on embedded devices , 2022, Future Gener. Comput. Syst..

[4]  I-Hsuan Hsieh,et al.  A CNN-Based Wearable Assistive System for Visually Impaired People Walking Outdoors , 2021, Applied Sciences.

[5]  Zhengcai Cao,et al.  Rapid Detection of Blind Roads and Crosswalks by Using a Lightweight Semantic Segmentation Network , 2021, IEEE Transactions on Intelligent Transportation Systems.

[6]  Jaegul Choo,et al.  Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[7]  Chengnian Long,et al.  Faster BiSeNet: A Faster Bilateral Segmentation Network for Real-time Semantic Segmentation , 2021, 2021 International Joint Conference on Neural Networks (IJCNN).

[8]  Rainer Stiefelhagen,et al.  Trans4Trans: Efficient Transformer for Transparent Object Segmentation to Help Visually Impaired People Navigate in the Real World , 2021, 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW).

[9]  Zhenhua Chai,et al.  Rethinking BiSeNet For Real-time Semantic Segmentation , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Roland Siegwart,et al.  Pixel-wise Anomaly Detection in Complex Driving Scenes , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  R. Stiefelhagen,et al.  Panoptic Lintention Network: Towards Efficient Navigational Perception for the Visually Impaired , 2021, 2021 IEEE International Conference on Real-time Computing and Robotics (RCAR).

[12]  Fan Yang,et al.  EKENet: Efficient knowledge enhanced network for real-time scene parsing , 2021, Pattern Recognit..

[13]  Filip De Turck,et al.  FLAGS: A methodology for adaptive anomaly detection and root cause analysis on sensor data streams by fusing expert knowledge with machine learning , 2021, Future Gener. Comput. Syst..

[14]  Marin Orsic,et al.  Efficient semantic segmentation with pyramidal fusion , 2021, Pattern Recognit..

[15]  Pascal Fua,et al.  Detecting Road Obstacles by Erasing Them , 2020, ArXiv.

[16]  M. Rottmann,et al.  Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation , 2020, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[17]  I-Hsuan Hsieh,et al.  Outdoor walking guide for the visually-impaired people based on semantic segmentation and depth map , 2020, 2020 International Conference on Pervasive Artificial Intelligence (ICPAI).

[18]  Rainer Stiefelhagen,et al.  Helping the Blind to Get through COVID-19: Social Distancing Assistant Using Real-Time Semantic Segmentation on RGB-D Video , 2020, Sensors.

[19]  Yingda Xia,et al.  Synthesize then Compare: Detecting Failures and Anomalies for Semantic Segmentation , 2020, ECCV.

[20]  Chih-Yang Lin,et al.  Content-Aware Video Analysis to Guide Visually Impaired Walking on the Street , 2019, IVIC.

[21]  Pascal Fua,et al.  Detecting the Unexpected via Image Resynthesis , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[22]  Roland Siegwart,et al.  The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation , 2019, International Journal of Computer Vision.

[23]  Jian Sun,et al.  DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Siniša Šegvić,et al.  In Defense of Pre-Trained ImageNet Architectures for Real-Time Semantic Segmentation of Road-Driving Images , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Roberto Cipolla,et al.  Fast-SCNN: Fast Semantic Segmentation Network , 2019, BMVC.

[26]  Gang Yu,et al.  BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation , 2018, ECCV.

[27]  Dong Liu,et al.  Real-time pedestrian crossing lights detection algorithm for the visually impaired , 2018, Multimedia Tools and Applications.

[28]  Davide Mazzini,et al.  Guided Upsampling Network for Real-Time Semantic Segmentation , 2018, BMVC.

[29]  Ruiqi Cheng,et al.  KrNet: A Kinetic Real-Time Convolutional Neural Network for Navigational Assistance , 2018, ICCHP.

[30]  Kibok Lee,et al.  A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks , 2018, NeurIPS.

[31]  Christopher Zach,et al.  ContextNet: Exploring Context and Detail for Semantic Segmentation in Real-time , 2018, BMVC.

[32]  Luis Miguel Bergasa,et al.  Unifying Terrain Awareness for the Visually Impaired through Real-Time Semantic Segmentation , 2018, Sensors.

[33]  Linda G. Shapiro,et al.  ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation , 2018, ECCV.

[34]  Dong Liu,et al.  Crosswalk navigation for people with visual impairments on a wearable device , 2017, J. Electronic Imaging.

[35]  R. Srikant,et al.  Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks , 2017, ICLR.

[36]  R. Srikant,et al.  Principled Detection of Out-of-Distribution Examples in Neural Networks , 2017, ArXiv.

[37]  Laura Giarré,et al.  Enabling independent navigation for visually impaired people through a wearable vision-based feedback system , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[38]  Xiaojuan Qi,et al.  ICNet for Real-Time Semantic Segmentation on High-Resolution Images , 2017, ECCV.

[39]  Alex Kendall,et al.  What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? , 2017, NIPS.

[40]  Charles Blundell,et al.  Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles , 2016, NIPS.

[41]  Xiaogang Wang,et al.  Pyramid Scene Parsing Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[42]  Kevin Gimpel,et al.  A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks , 2016, ICLR.

[43]  Josechu J. Guerrero,et al.  Navigation Assistance for the Visually Impaired Using RGB-D Sensor With Range Expansion , 2016, IEEE Systems Journal.

[44]  Christopher Joseph Pal,et al.  The Importance of Skip Connections in Biomedical Image Segmentation , 2016, LABELS/DLMIA@MICCAI.

[45]  Eugenio Culurciello,et al.  ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation , 2016, ArXiv.

[46]  Iasonas Kokkinos,et al.  DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Sebastian Ramos,et al.  The Cityscapes Dataset for Semantic Urban Scene Understanding , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[48]  Roberto Cipolla,et al.  SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  Roberto Cipolla,et al.  Segmentation and Recognition Using Structure from Motion Point Clouds , 2008, ECCV.

[50]  Dawn Song,et al.  Scaling Out-of-Distribution Detection for Real-World Settings , 2022, ICML.

[51]  Sinisa Segvic,et al.  Dense outlier detection and open-set recognition based on training with noisy negative images , 2021, ArXiv.

[52]  K. Horiguchi,et al.  Road Obstacle Detection Method Based on an Autoencoder with Semantic Segmentation , 2020, ACCV.