The deconvolution problem: Fast algorithms including the preconditioned conjugate-gradient to compute a MAP estimator

Different aspects of the deconvolution problem are discussed and a solution by the MAP estimator using the a priori knowledge of smoothness and nonnegativity of the unknown signal is proposed. Several fast algorithms are examined and the conjugate-gradient (CG) method is show to have several advantages: it allows computation of a constrained solution and when used with a preconditioning technique it can be faster than other algorithms for general near-to-Toeplitz systems, in particular, for Toeplitz-block-Toeplitz systems.

[1]  N. Levinson The Wiener (Root Mean Square) Error Criterion in Filter Design and Prediction , 1946 .

[2]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[3]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[4]  David L. Phillips,et al.  A Technique for the Numerical Solution of Certain Integral Equations of the First Kind , 1962, JACM.

[5]  R. B. Rice Inverse convolution filters , 1962 .

[6]  W. F. Trench An Algorithm for the Inversion of Finite Toeplitz Matrices , 1964 .

[7]  S. Twomey The application of numerical filtering to the solution of integral equations encountered in indirect sensing measurements , 1965 .

[8]  E. Robinson,et al.  PRINCIPLES OF DIGITAL WIENER FILTERING , 1967 .

[9]  D. J. Evans,et al.  The Use of Pre-conditioning in Iterative Methods for Solving Linear Equations with Symmetric Positive Definite Matrices , 1968 .

[10]  O. Strand,et al.  Minimum-RMS Estimation of the Numerical Solution of a Fredholm Integral Equation of the First Kind , 1968 .

[11]  Y. D. Biraud,et al.  A New Approach for Increasing the Resolving Power by Data Processing , 1969 .

[12]  B. Hunt The inverse problem of radiography , 1970 .

[13]  T. J. Ulrych,et al.  Application of homomorphic deconvolution to seismology , 1971 .

[14]  B. Hunt A matrix theory proof of the discrete convolution theorem , 1971 .

[15]  B. Frieden Restoring with maximum likelihood and maximum entropy. , 1972, Journal of the Optical Society of America.

[16]  B. Hunt A theorem on the difficulty of numerical deconvolution , 1972 .

[17]  J. Reid The Use of Conjugate Gradients for Systems of Linear Equations Possessing “Property A” , 1972 .

[18]  M. Ekstrom A spectral characterization of the ill-conditioning in numerical deconvolution , 1973, IEEE Transactions on Audio and Electroacoustics.

[19]  H. Akaike Block Toeplitz Matrix Inversion , 1973 .

[20]  R. J. Wang,et al.  The Determination of Digital Wiener Filters by Means of Gradient Methods , 1973 .

[21]  P. Bloomfield,et al.  Numerical differentiation procedures for non-exact data , 1974 .

[22]  Norman D. Crump,et al.  A Kalman filter approach to the deconvolution of seismic signals , 1974 .

[23]  M. Morf,et al.  Some new algorithms for recursive estimation in constant, linear, discrete-time systems , 1974 .

[24]  Gabor T. Herman,et al.  A Computer Implementation of a Bayesian Analysis of Image Reconstruction , 1976, Inf. Control..

[25]  A. Jennings Influence of the Eigenvalue Spectrum on the Convergence Rate of the Conjugate Gradient Method , 1977 .

[26]  L. Silverman,et al.  Digital restoration of images degraded by general motion blurs , 1977 .

[27]  Jerry M. Mendel,et al.  Single-channel white-noise estimators for deconvolution , 1978 .

[28]  Vijay K. Arya,et al.  Deconvolution of Seismic Data - An Overview , 1978 .

[29]  H. Trussell,et al.  Notes on linear image restoration by maximizing the a posteriori probability , 1978 .

[30]  A. Jain Fast inversion of banded Toeplitz matrices by circular decompositions , 1978 .

[31]  L. Ljung,et al.  Extended Levinson and Chandrasekhar equations for general discrete-time linear estimation problems , 1978 .

[32]  G. Demoment,et al.  Transducer smearing correction using a microprocessor-based discrete deconvolution , 1979, 1979 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[33]  B. Anderson,et al.  Asymptotically fast solution of toeplitz and related systems of linear equations , 1980 .

[34]  Martin Morf,et al.  Doubling algorithms for Toeplitz and related equations , 1980, ICASSP.

[35]  David Y. Y. Yun,et al.  Fast Solution of Toeplitz Systems of Equations and Computation of Padé Approximants , 1980, J. Algorithms.

[36]  D. Commenges A New Deconvolution Technique and its Application to the Study of Vascular Systems , 1982 .

[37]  D Commenges,et al.  A deconvolution program for processing radiotracer dilution curves. , 1982, Computer programs in biomedicine.

[38]  A Kuruc,et al.  An improved deconvolution technique for the calculation of renal retention functions. , 1982, Computers and biomedical research, an international journal.

[39]  D. Commenges Approche bayesienne en traitement de signal : estimation du signal d'entrée d'un système linéaire , 1982 .

[40]  J. L. Hock,et al.  An exact recursion for the composite nearest‐neighbor degeneracy for a 2×N lattice space , 1984 .