On Singular Values of Random Matrices
暂无分享,去创建一个
[1] Ivar Fredholm. Sur une classe d’équations fonctionnelles , 1903 .
[2] J. Wishart. THE GENERALISED PRODUCT MOMENT DISTRIBUTION IN SAMPLES FROM A NORMAL MULTIVARIATE POPULATION , 1928 .
[3] G. Carpenter. In Providence, R. I. , 1929 .
[4] C. Eckart,et al. A principal axis transformation for non-hermitian matrices , 1939 .
[5] M. A. Girshick. On the Sampling Theory of Roots of Determinantal Equations , 1939 .
[6] R. Fisher. THE SAMPLING DISTRIBUTION OF SOME STATISTICS OBTAINED FROM NON‐LINEAR EQUATIONS , 1939 .
[7] P. Hsu. ON THE DISTRIBUTION OF ROOTS OF CERTAIN DETERMINANTAL EQUATIONS , 1939 .
[8] A. Tikhonov. On the stability of inverse problems , 1943 .
[9] J. Neumann,et al. Numerical inverting of matrices of high order , 1947 .
[10] H. Weyl. Inequalities between the Two Kinds of Eigenvalues of a Linear Transformation. , 1949, Proceedings of the National Academy of Sciences of the United States of America.
[11] Feller William,et al. An Introduction To Probability Theory And Its Applications , 1950 .
[12] A. Hoffman,et al. The variation of the spectrum of a normal matrix , 1953 .
[13] A. Horn. On the eigenvalues of a matrix with prescribed singular values , 1954 .
[14] T. W. Anderson. An Introduction to Multivariate Statistical Analysis , 1959 .
[15] A. James. The Distribution of the Latent Roots of the Covariance Matrix , 1960 .
[16] J. Lamperti. ON CONVERGENCE OF STOCHASTIC PROCESSES , 1962 .
[17] N. R. Goodman. Statistical analysis based on a certain multivariate complex Gaussian distribution , 1963 .
[18] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[19] P. B. Kahn,et al. Higher Order Spacing Distributions for a Class of Unitary Ensembles , 1964 .
[20] C. Khatri. Classical Statistical Analysis Based on a Certain Multivariate Complex Gaussian Distribution , 1965 .
[21] J. Ginibre. Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .
[22] M. Fiedler,et al. Matrix Inequalities , 1966 .
[23] C. Borell. The Brunn-Minkowski inequality in Gauss space , 1975 .
[24] R. C. Thompson. The behavior of eigenvalues and singular values under perturbations of restricted rank , 1976 .
[25] T. Figiel,et al. The dimension of almost spherical sections of convex bodies , 1976 .
[26] Conditions for Sample-Continuity and the Central Limit Theorem , 1977 .
[27] K. Wachter. The Strong Limits of Random Matrix Spectra for Sample Matrices of Independent Elements , 1978 .
[28] R. Cuninghame-Green,et al. Applied Linear Algebra , 1979 .
[29] Mario Bertero,et al. The Stability of Inverse Problems , 1980 .
[30] V. V. Buldygin,et al. Sub-Gaussian random variables , 1980 .
[31] S. Geman. A Limit Theorem for the Norm of Random Matrices , 1980 .
[32] Dag Jonsson. Some limit theorems for the eigenvalues of a sample covariance matrix , 1982 .
[33] R. Muirhead. Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.
[34] E. Giné,et al. Some Limit Theorems for Empirical Processes , 1984 .
[35] B. Carl. Inequalities of Bernstein-Jackson-type and the degree of compactness of operators in Banach spaces , 1985 .
[36] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[37] Y. Gordon. Some inequalities for Gaussian processes and applications , 1985 .
[38] W. Johnson. Best Constants in Moment Inequalities for Linear Combinations of Independent and Exchangeable Random Variables , 1985 .
[39] J. W. Silverstein. The Smallest Eigenvalue of a Large Dimensional Wishart Matrix , 1985 .
[40] S. Smale. On the efficiency of algorithms of analysis , 1985 .
[41] A. Pajor,et al. Subspaces of small codimension of finite-dimensional Banach spaces , 1986 .
[42] Zoltán Füredi,et al. Computing the volume is difficult , 1986, STOC '86.
[43] V. Milman,et al. Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .
[44] S. Resnick. Extreme Values, Regular Variation, and Point Processes , 1987 .
[45] E. Kostlan. Complexity theory of numerical linear algebra , 1988 .
[46] Zoltán Füredi,et al. Approximation of the sphere by polytopes having few vertices , 1988 .
[47] A. Edelman. Eigenvalues and condition numbers of random matrices , 1988 .
[48] B. Carl,et al. Gelfand numbers of operators with values in a Hilbert space , 1988 .
[49] Alain Pajor,et al. Volume Ratio and Other s-Numbers of Operators Related to Local Properties of Banach Spaces , 1989 .
[50] Jean Bourgain,et al. On the duality problem for entropy numbers of operators , 1989 .
[51] J. Bourgain. Bounded orthogonal systems and the Λ(p)-set problem , 1989 .
[52] G. Pisier. The volume of convex bodies and Banach space geometry , 1989 .
[53] S. Montgomery-Smith. The distribution of Rademacher sums , 1990 .
[54] B. Carl,et al. Entropy, Compactness and the Approximation of Operators , 1990 .
[55] Alain Pajor,et al. Gelfand Numbers and Euclidean Sections of Large Dimensions , 1990 .
[56] B. Bollobás. THE VOLUME OF CONVEX BODIES AND BANACH SPACE GEOMETRY (Cambridge Tracts in Mathematics 94) , 1991 .
[57] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[58] Stanislaw J. Szarek,et al. Condition numbers of random matrices , 1991, J. Complex..
[59] M. Talagrand,et al. Probability in Banach Spaces: Isoperimetry and Processes , 1991 .
[60] G. Pisier,et al. Non commutative Khintchine and Paley inequalities , 1991 .
[61] Stephen J. Dilworth,et al. The Distribution of Vector-Valued Rademacher Series , 1992 .
[62] Y. Gordon. Majorization of Gaussian processes and geometric applications , 1992 .
[63] Richard P. Stanley,et al. Some combinatorial aspects of the spectra of normally distributed random matrices , 1992 .
[64] Bernstein inequalities for a class of random variables , 1993 .
[65] C. Tracy,et al. Introduction to Random Matrices , 1992, hep-th/9210073.
[66] P. Hitczenko. Domination inequality for martingale transforms of a Rademacher sequence , 1993 .
[67] Z. Bai,et al. Limit of the smallest eigenvalue of a large dimensional sample covariance matrix , 1993 .
[68] G. Pisier. Non-commutative vector valued Lp-spaces and completely p-summing maps , 1993, math/9306206.
[69] M. Talagrand. THE SUPREMUM OF SOME CANONICAL PROCESSES , 1994 .
[70] M. Talagrand. Sections of smooth convex bodies via majorizing measures , 1995 .
[71] H. Massam,et al. Craig-Sakamoto's theorem for the Wishart distributions on symmetric cones , 1995 .
[72] E. Szemerédi,et al. On the probability that a random ±1-matrix is singular , 1995 .
[73] Tail and moment estimates for sums of independent random vectors with logarithmically concave tails , 1996 .
[74] M. Talagrand. New concentration inequalities in product spaces , 1996 .
[75] M. Rudelson. Random Vectors in the Isotropic Position , 1996, math/9608208.
[76] R. Latala. Estimation of moments of sums of independent real random variables , 1997 .
[77] K. Ball. An Elementary Introduction to Modern Convex Geometry , 1997 .
[78] G. Lugosi,et al. On Concentration-of-Measure Inequalities , 1998 .
[79] A. Pajor. Metric Entropy of the Grassmann Manifold , 1998 .
[80] Mario Bertero,et al. Introduction to Inverse Problems in Imaging , 1998 .
[81] M. Talagrand. Selecting a proportion of characters , 1998 .
[82] J. W. Silverstein,et al. No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices , 1998 .
[83] Wolfgang Osten,et al. Introduction to Inverse Problems in Imaging , 1999 .
[84] Z. Bai. METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES , A REVIEW , 1999 .
[85] K. Johansson. Shape Fluctuations and Random Matrices , 1999, math/9903134.
[86] F. Hiai,et al. The semicircle law, free random variables, and entropy , 2006 .
[87] P. Massart,et al. About the constants in Talagrand's concentration inequalities for empirical processes , 2000 .
[88] P. Deift. Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .
[89] I. Johnstone. On the distribution of the largest eigenvalue in principal components analysis , 2001 .
[90] E. Berger. UNIFORM CENTRAL LIMIT THEOREMS (Cambridge Studies in Advanced Mathematics 63) By R. M. D UDLEY : 436pp., £55.00, ISBN 0-521-46102-2 (Cambridge University Press, 1999). , 2001 .
[91] M. Ledoux. The concentration of measure phenomenon , 2001 .
[92] A. Soshnikov. A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices , 2001, math/0104113.
[93] Jianhong Shen. On the singular values of Gaussian random matrices , 2001 .
[94] C. Tracy,et al. Distribution Functions for Largest Eigenvalues and Their Applications , 2002, math-ph/0210034.
[95] P. MassartLedoux,et al. Concentration Inequalities Using the Entropy Method , 2002 .
[96] E. Rio. Une inégalité de Bennett pour les maxima de processus empiriques , 2002 .
[97] O. Bousquet. A Bennett concentration inequality and its application to suprema of empirical processes , 2002 .
[98] A. Edelman,et al. Matrix models for beta ensembles , 2002, math-ph/0206043.
[99] Gábor Lugosi,et al. Concentration Inequalities , 2008, COLT.
[100] Shang-Hua Teng,et al. Smoothed Analysis (Motivation and Discrete Models) , 2003, WADS.
[101] Increasing subsequences and the hard-to-soft edge transition in matrix ensembles , 2002, math-ph/0205007.
[102] O. Bousquet. Concentration Inequalities for Sub-Additive Functions Using the Entropy Method , 2003 .
[103] S. Thorbjørnsen,et al. Random matrices with complex Gaussian entries , 2003 .
[104] S. Péché,et al. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices , 2004, math/0403022.
[105] Jean-Marc Azaïs,et al. Upper and Lower Bounds for the Tails of the Distribution of the Condition Number of a Gaussian Matrix , 2005, SIAM J. Matrix Anal. Appl..
[106] Tharmalingam Ratnarajah,et al. Eigenvalues and Condition Numbers of Complex Random Matrices , 2005, SIAM J. Matrix Anal. Appl..
[107] Albert Tarantola,et al. Inverse problem theory - and methods for model parameter estimation , 2004 .
[108] Michel Ledoux,et al. Differential Operators and Spectral Distributions of Invariant Ensembles from the Classical Orthogonal Polynomials. The Continuous Case , 2004 .
[109] S. Artstein,et al. Duality of metric entropy , 2004 .
[110] R. Lata,et al. SOME ESTIMATES OF NORMS OF RANDOM MATRICES , 2004 .
[111] P. Loubaton,et al. The empirical distribution of the eigenvalues of a Gram matrix with a given variance profile , 2004, math/0411333.
[112] S. Mendelson. On weakly bounded empirical processes , 2005, math/0512554.
[113] T. Tao,et al. Inverse Littlewood-Offord theorems and the condition number of random discrete matrices , 2005, math/0511215.
[114] L. Trefethen,et al. Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .
[115] J. W. Silverstein,et al. Analysis of the limiting spectral distribution of large dimensional information-plus-noise type matrices , 2005 .
[116] Alan Edelman,et al. Tails of Condition Number Distributions , 2005, SIAM J. Matrix Anal. Appl..
[117] Zizhong Chen,et al. Condition Numbers of Gaussian Random Matrices , 2005, SIAM J. Matrix Anal. Appl..
[118] Alan Edelman,et al. Eigenvalues of Hermite and Laguerre ensembles: large beta asymptotics , 2005 .
[119] Daniel A. Spielman. The Smoothed Analysis of Algorithms , 2005, FCT.
[120] L. Trefethen. Spectra and pseudospectra , 2005 .
[121] Yan V. Fyodorov,et al. On the largest singular values of random matrices with independent Cauchy entries , 2004, math/0403425.
[122] S. Péché,et al. Universality of local eigenvalue statistics for some sample covariance matrices , 2005 .
[123] G. Golub,et al. Inverse Eigenvalue Problems: Theory, Algorithms, and Applications , 2005 .
[124] David L. Donoho,et al. Neighborly Polytopes And Sparse Solution Of Underdetermined Linear Equations , 2005 .
[125] V. Bentkus. A Lyapunov-type Bound in Rd , 2005 .
[126] E. Candès,et al. Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.
[127] M. Rudelson,et al. Lp-moments of random vectors via majorizing measures , 2005, math/0507023.
[128] Emmanuel J. Candès,et al. Decoding by linear programming , 2005, IEEE Transactions on Information Theory.
[129] E. Rio,et al. Concentration around the mean for maxima of empirical processes , 2005, math/0506594.
[130] T. Tao,et al. On the singularity probability of random Bernoulli matrices , 2005, math/0501313.
[131] M. Rudelson. Invertibility of random matrices: norm of the inverse , 2005, math/0507024.
[132] M. Stephanov,et al. Random Matrices , 2005, hep-ph/0509286.
[133] M. Rudelson,et al. Smallest singular value of random matrices and geometry of random polytopes , 2005 .
[134] P. Bartlett,et al. Empirical minimization , 2006 .
[135] S. Mendelson,et al. On singular values of matrices with independent rows , 2006 .
[136] Nathan Linial,et al. How Neighborly Can a Centrally Symmetric Polytope Be? , 2006, Discret. Comput. Geom..
[137] D. Donoho. For most large underdetermined systems of equations, the minimal 𝓁1‐norm near‐solution approximates the sparsest near‐solution , 2006 .
[138] G. Paouris. Concentration of mass on convex bodies , 2006 .
[139] Mark Rudelson,et al. Lower estimates for the singular values of random matrices , 2006 .
[140] Alexander Soshnikov,et al. Poisson Statistics for the Largest Eigenvalues in Random Matrix Ensembles , 2006 .
[141] S. Mendelson,et al. Uniform Uncertainty Principle for Bernoulli and Subgaussian Ensembles , 2006, math/0608665.
[142] P. Deift. Universality for mathematical and physical systems , 2006, math-ph/0603038.
[143] V. Koltchinskii. Local Rademacher complexities and oracle inequalities in risk minimization , 2006, 0708.0083.
[144] Emmanuel J. Candès,et al. Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.
[145] Franck Barthe,et al. The BrunnMinkowski theorem and related geometric and functional inequalities , 2006 .
[146] T. Tao,et al. On random ±1 matrices: Singularity and determinant , 2006 .
[147] T. Tao,et al. RANDOM MATRICES: THE CIRCULAR LAW , 2007, 0708.2895.
[148] R. Adamczak. A tail inequality for suprema of unbounded empirical processes with applications to Markov chains , 2007, 0709.3110.
[149] M. Rudelson,et al. The Littlewood-Offord problem and invertibility of random matrices , 2007, math/0703503.
[150] B. Klartag,et al. A Berry-Esseen type inequality for convex bodies with an unconditional basis , 2007, 0705.0832.
[151] Shahar Mendelson,et al. Gaussian averages of interpolated bodies and applications to approximate reconstruction , 2007, J. Approx. Theory.
[152] S. Mendelson,et al. Subspaces and Orthogonal Decompositions Generated by Bounded Orthogonal Systems , 2007 .
[153] Noureddine El Karoui. Tracy–Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices , 2005, math/0503109.
[154] J. W. Silverstein,et al. On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices , 2007 .
[155] S. Péché. Universality results for largest eigenvalues of some sample covariance matrix ensembles , 2007, 0705.1701.
[156] B. Klartag. A central limit theorem for convex sets , 2006, math/0605014.
[157] S. Mendelson,et al. Reconstruction and Subgaussian Operators in Asymptotic Geometric Analysis , 2007 .
[158] S. Mendelson,et al. Majorizing measures and proportional subsets of bounded orthonormal systems , 2008, 0801.3556.
[159] M. Rudelson,et al. On sparse reconstruction from Fourier and Gaussian measurements , 2008 .
[160] R. DeVore,et al. Compressed sensing and best k-term approximation , 2008 .
[161] M. Rudelson,et al. The least singular value of a random square matrix is O(n−1/2) , 2008, 0805.3407.
[162] Francois Germinet,et al. On the singularity of random matrices with independent entries , 2008 .
[163] Ohad N. Feldheim,et al. A Universality Result for the Smallest Eigenvalues of Certain Sample Covariance Matrices , 2008, 0812.1961.
[164] Alexander E. Litvak,et al. Smallest singular value of random matrices with independent columns , 2008 .
[165] Ioana Dumitriu,et al. Distributions of the Extreme Eigenvaluesof Beta-Jacobi Random Matrices , 2008, SIAM J. Matrix Anal. Appl..
[166] M. Rudelson,et al. The smallest singular value of a random rectangular matrix , 2008, 0802.3956.
[167] R. DeVore,et al. A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .
[168] Jelena Kovacevic,et al. An Introduction to Frames , 2008, Found. Trends Signal Process..
[169] E. Candès. The restricted isometry property and its implications for compressed sensing , 2008 .
[170] Terence Tao,et al. Random matrices: Universality of ESDs and the circular law , 2008, 0807.4898.
[171] R. Adamczak,et al. Restricted Isometry Property of Matrices with Independent Columns and Neighborly Polytopes by Random Sampling , 2009, 0904.4723.
[172] T. Tao,et al. Random Matrices: the Distribution of the Smallest Singular Values , 2009, 0903.0614.
[173] J. W. Silverstein,et al. Spectral Analysis of Large Dimensional Random Matrices , 2009 .
[174] Amir Dembo,et al. Spectral Measure of Heavy Tailed Band and Covariance Random Matrices , 2008, 0811.1587.
[175] J. Azaïs,et al. Level Sets and Extrema of Random Processes and Fields , 2009 .
[176] S. Foucart,et al. Sparsest solutions of underdetermined linear systems via ℓq-minimization for 0 , 2009 .
[177] R. Adamczak,et al. Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles , 2009, 0903.2323.
[178] H. Rauhut. Compressive Sensing and Structured Random Matrices , 2009 .
[179] S. P'ech'e,et al. The largest eigenvalues of sample covariance matrices for a spiked population: Diagonal case , 2008, 0812.2320.
[180] Jean Bourgain,et al. On the singularity probability of discrete random matrices , 2009, 0905.0461.
[181] Holger Rauhut,et al. The Gelfand widths of ℓp-balls for 0 , 2010, ArXiv.
[182] Ming-Jun Lai,et al. Sparse recovery with pre-Gaussian random matrices , 2010 .
[183] P. Forrester. Log-Gases and Random Matrices , 2010 .
[184] Terence Tao,et al. Smooth analysis of the condition number and the least singular value , 2008, Math. Comput..
[185] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[186] J. Ramírez,et al. Beta ensembles, stochastic Airy spectrum, and a diffusion , 2006, math/0607331.
[187] Alex Gittens,et al. TAIL BOUNDS FOR ALL EIGENVALUES OF A SUM OF RANDOM MATRICES , 2011, 1104.4513.
[188] Roman Vershynin,et al. Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.
[189] J. Demmel. The Probability That a Numerical, Analysis Problem Is Difficult , 2013 .
[190] H. König,et al. Asymptotic Geometric Analysis , 2015 .
[191] S. Frick,et al. Compressed Sensing , 2014, Computer Vision, A Reference Guide.
[192] Teodoro Collin. RANDOM MATRIX THEORY , 2016 .