Hysteresis behavior of Kerr frequency comb generation in a high-quality-factor whispering-gallery-mode microcavity

A numerical and experimental study of Kerr frequency comb generation in a silica toroid microcavity is presented. We use a generalized mean-field Lugiato–Lefever equation and solve it with the split-step Fourier method. We observe that a stable mode-locked regime can be accessed when we reduce the input power after strong pumping due to the bistable nature of the nonlinear cavity system used. The experimental results agree well with the results of the numerical analysis, where we obtain a low-noise Kerr comb spectrum by gradually reducing the pumping input after strong pumping. This finding complements the results obtained by a previous wavelength scanning method and clarifies the procedure for achieving mode-locked states in such high-Q microcavity systems.

[1]  Björn Sandstede,et al.  Theory of passive harmonic mode-locking using waveguide arrays. , 2008, Optics express.

[2]  T. Sylvestre,et al.  Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model. , 2012, Optics letters.

[3]  Masaya Notomi,et al.  Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity , 2007 .

[4]  Aurélien Coillet,et al.  On the robustness of phase locking in Kerr optical frequency combs. , 2014, Optics letters.

[5]  Michal Lipson,et al.  Modelocking and femtosecond pulse generation in chip-based frequency combs. , 2012, Optics express.

[6]  T. Kippenberg,et al.  Optical frequency comb generation from a monolithic microresonator , 2007, Nature.

[7]  A. Matsko,et al.  On excitation of breather solitons in an optical microresonator. , 2012, Optics letters.

[8]  L. Gelens,et al.  Dynamics of one-dimensional Kerr cavity solitons. , 2013, Optics express.

[9]  T. Kippenberg,et al.  Microresonator-Based Optical Frequency Combs , 2011, Science.

[10]  Yanne K Chembo,et al.  Routes to spatiotemporal chaos in Kerr optical frequency combs. , 2014, Chaos.

[11]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[12]  H. M. Gibbs,et al.  Differential Gain and Bistability Using a Sodium-Filled Fabry-Perot Interferometer , 1976 .

[13]  L. Maleki,et al.  Ultra high Q crystalline microcavities , 2005, International Quantum Electronics Conference, 2005..

[14]  A. Matsko,et al.  Kerr frequency comb generation in overmoded resonators. , 2012, Optics express.

[15]  A. Matsko,et al.  Mode-locked Kerr frequency combs. , 2011, Optics letters.

[16]  S Wabnitz,et al.  Suppression of interactions in a phase-locked soliton optical memory. , 1993, Optics letters.

[17]  Yanne K Chembo,et al.  Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators. , 2010, Physical review letters.

[18]  M. Gorodetsky,et al.  Temporal solitons in optical microresonators , 2012, Nature Photonics.

[19]  A. Weiner,et al.  Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[20]  M. Gorodetsky,et al.  Universal formation dynamics and noise of Kerr-frequency combs in microresonators , 2012, Nature Photonics.

[21]  R. Lefever,et al.  Spatial dissipative structures in passive optical systems. , 1987, Physical review letters.